1
|
Jarrett BJM, Downing PA, Svensson EI. Meta-analysis reveals that phenotypic plasticity and divergent selection promote reproductive isolation during incipient speciation. Nat Ecol Evol 2025; 9:833-844. [PMID: 40350540 PMCID: PMC12066359 DOI: 10.1038/s41559-025-02687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025]
Abstract
The evolution of reproductive isolation is a key evolutionary process, but the factors that shape its development in the early stages of speciation require clarification. Here, using a meta-analysis of 34 experimental speciation studies on arthropods, yeast and vertebrates, we show that populations subject to divergent selection evolved stronger reproductive isolation compared with populations that evolved in similar environments, consistent with ecological speciation theory. However, and contrary to predictions, reproductive isolation did not increase with the number of generations. Phenotypic plasticity could partly explain these results as divergent environments induce a plastic increase in reproductive isolation greater than the effect of divergent selection, but only for pre-mating isolating barriers. Our results highlight that adaptive evolution in response to different environments in conjunction with plasticity can initiate a rapid increase in reproductive isolation in the early stage of speciation.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK.
- Department of Biology, Lund University, Lund, Sweden.
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | |
Collapse
|
2
|
Singh P, Brueggemann L, Janz S, Saidi Y, Baruah G, Müller C. Plant metabolites modulate social networks and lifespan in a sawfly. J Anim Ecol 2024; 93:1758-1770. [PMID: 39307977 DOI: 10.1111/1365-2656.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024]
Abstract
Social interactions influence disease spread, information flow and resource allocation across species, yet heterogeneity in social interaction frequency and its fitness consequences are still poorly understood. Additionally, the role of exogenous chemicals, such as non-nutritive plant metabolites that are utilised by several animal species, in shaping social networks remains unclear. Here, we investigated how non-nutritive plant metabolites impact social interactions and the lifespan of the turnip sawfly, Athalia rosae. Adult sawflies acquire neo-clerodane diterpenoids ('clerodanoids') from non-food plants and this can serve as a defence against predation and increase mating success. We found intraspecific variation in clerodanoids in natural populations and laboratory-reared individuals. Clerodanoids could also be acquired from conspecifics that had prior access to the plant metabolites, which led to increased agonistic social interactions. Network analysis indicated increased social interactions in sawfly groups where some or all individuals had prior access to clerodanoids, while groups with no prior access had fewer interactions. The frequency of social interactions was influenced by the clerodanoid status of the focal individual and that of other conspecifics. Finally, we observed a shorter lifespan in adults with prior clerodanoid access when grouped with individuals without prior access, suggesting that social interactions to obtain clerodanoids have fitness costs. Our findings highlight the role of intraspecific variation in the acquisition of non-nutritional plant metabolites in shaping social networks. This variation influences individual fitness and social interactions, thereby shaping the individualised social niche.
Collapse
Affiliation(s)
- Pragya Singh
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Steven Janz
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Yasmina Saidi
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Gaurav Baruah
- Theoretical Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
3
|
Tu J, Wang Z, Yang F, Liu H, Qiao G, Zhang A, Wang S. The Female-Biased General Odorant Binding Protein 2 of Semiothisa cinerearia Displays Binding Affinity for Biologically Active Host Plant Volatiles. BIOLOGY 2024; 13:274. [PMID: 38666886 PMCID: PMC11048283 DOI: 10.3390/biology13040274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Herbivorous insects rely on volatile chemical cues from host plants to locate food sources and oviposition sites. General odorant binding proteins (GOBPs) are believed to be involved in the detection of host plant volatiles. In the present study, one GOBP gene, ScinGOBP2, was cloned from the antennae of adult Semiothisa cinerearia. Reverse-transcription PCR and real-time quantitative PCR analysis revealed that the expression of ScinGOBP2 was strongly biased towards the female antennae. Fluorescence-based competitive binding assays revealed that 8 of the 27 host plant volatiles, including geranyl acetone, decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, 1-nonene, dipentene, α-pinene and β-pinene, bound to ScinGOBP2 (KD = 2.21-14.94 μM). The electrical activities of all eight ScinGOBP2 ligands were confirmed using electroantennography. Furthermore, oviposition preference experiments showed that eight host volatiles, such as decanal, cis-3-hexenyl n-valerate, cis-3-hexenyl butyrate, and α-pinene, had an attractive effect on female S. cinerearia, whereas geranyl acetone, 1-nonene, β-pinene, and dipentene inhibited oviposition in females. Consequently, it can be postulated that ScinGOBP2 may be implicated in the perception of host plant volatiles and that ScinGOBP2 ligands represent significant semiochemicals mediating the interactions between plants and S. cinerearia. This insight could facilitate the development of a chemical ecology-based approach for the management of S. cinerearia.
Collapse
Affiliation(s)
- Jingjing Tu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Zehua Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Fan Yang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Han Liu
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Guanghang Qiao
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| | - Aihuan Zhang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China;
| | - Shanning Wang
- Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Coconstructed by the Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.T.); (Z.W.); (F.Y.); (H.L.); (G.Q.)
| |
Collapse
|