1
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
2
|
Joshi JN, Changela N, Mahal L, Defosse T, Jang J, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585003. [PMID: 38559067 PMCID: PMC10980020 DOI: 10.1101/2024.03.14.585003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.
Collapse
|
3
|
Bi YH, Li Z, Zhou ZG. Karyotype analysis of the brown seaweed Saccharina (or Laminaria) japonica. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
5
|
Li X, Mao W, Chen J, Goding CR, Cui R, Xu ZX, Miao X. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discov 2021; 7:111. [PMID: 34001865 PMCID: PMC8128912 DOI: 10.1038/s41420-021-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Variants in the melanocortin-1 receptor (MC1R) gene, encoding a trimeric G-protein-coupled receptor and activated by α-melanocyte-stimulating hormone (α-MSH), are frequently associated with red or blonde hair, fair skin, freckling, and skin sensitivity to ultraviolet (UV) light. Several red hair color variants of MC1R are also associated with increased melanoma risk. MC1R variants affect melanoma risk independent of phenotype. Here, we demonstrated that MC1R is a critical factor in chromosome stability and centromere integrity in melanocytes. α-MSH/MC1R stimulation prevents melanocytes from UV radiation-induced damage of chromosome stability and centromere integrity. Mechanistic studies indicated that α-MSH/MC1R-controlled chromosome stability and centromeric integrity are mediated by microphthalmia-associated transcription factor (Mitf), a transcript factor needed for the α-MSH/MC1R signaling and a regulator in melanocyte development, viability, and pigment production. Mitf directly interacts with centromere proteins A in melanocytes. Given the connection among MC1R variants, red hair/fair skin phenotype, and melanoma development, these studies will help answer a question with clinical relevance “why red-haired individuals are so prone to developing melanoma”, and will lead to the identification of novel preventive and therapeutic strategies for melanomas, especially those with redheads.
Collapse
Affiliation(s)
- Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Weiwei Mao
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jie Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Rutao Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China. .,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
6
|
Abstract
The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.
Collapse
|
7
|
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:2057-2068. [PMID: 32295767 PMCID: PMC7263675 DOI: 10.1534/g3.120.401131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1 Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7 -7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5 -bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7 -7 strain. We determined that mcm5 -bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7 -7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7 -7 psh1 Δ strain were similar to that of cdc7 -7 and psh1 Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.
Collapse
|
8
|
Curtis NL, Ruda GF, Brennan P, Bolanos-Garcia VM. Deregulation of Chromosome Segregation and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mitotic spindle assembly checkpoint (SAC) is an intricate cell signaling system that ensures the high fidelity and timely segregation of chromosomes during cell division. Mistakes in this process can lead to the loss, gain, or rearrangement of the genetic material. Gross chromosomal aberrations are usually lethal but can cause birth and development defects as well as cancer. Despite advances in the identification of SAC protein components, important details of the interactions underpinning chromosome segregation regulation remain to be established. This review discusses the current understanding of the function, structure, mode of regulation, and dynamics of the assembly and disassembly of SAC subcomplexes, which ultimately safeguard the accurate transmission of a stable genome to descendants. We also discuss how diverse oncoviruses take control of human cell division by exploiting the SAC and the potential of this signaling circuitry as a pool of drug targets to develop effective cancer therapies.
Collapse
Affiliation(s)
- Natalie L. Curtis
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gian Filippo Ruda
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Brennan
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
9
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
10
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Gomez-Raya L, Rauw WM, Dunkelberger JR, Dekkers JCM. Autozygosity and Genetic Differentiation of Landrace and Large White Pigs as Revealed by the Genetic Analyses of Crossbreds. Front Genet 2019; 10:739. [PMID: 31543894 PMCID: PMC6739446 DOI: 10.3389/fgene.2019.00739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic information from crossbreds is routinely generated for genomic evaluations. The objective of this study is to investigate autozygosity and genetic differentiation in Landrace by Large-White breeds by using the genotypic information of SNP arrays in 1,173 crossbreds. A maximum likelihood approach was developed to estimate the probability of autozygosity (FL). Regions of differentiation between breeds were investigated using FST and the difference in allele frequencies between the two parental breeds (릌Δ) at each single-nucleotide polymorphism (SNP) position. A maximum likelihood approach was proposed to estimate allele frequencies in the parental populations. The average length of runs of homozygosity (ROH) across the genome was 3.91, 2.3, and 0.7 Mb for segments with at least 25, 15, and 5 SNPs, respectively. Average age to coalesce was 46, 414, and 388 years for segments with at least 25, 15, and 5 SNPs, respectively. The probability of autozygosity was not uniform along the crossbred genome, being higher at the center for most chromosomes. The correlation between autozygosity and distance to the closest telomere was positive and significant in most chromosomes, which could be attributed to the higher recombination rate near telomeres. We also report a relatively high negative correlation between probability of recombination (from a published map) and probability of autozygosity. It supports that structural characteristics of the chromosomes related to recombination rate determine autozygosity at each chromosomal position of the pig genome. The average is Δ across the genome was 0.17 (SD = 0.16). After testing for differences in allele frequencies between the parental breeds, there were 4,184 SNPs with a likelihood ratio test, LRT ≥ 32.02. The average FST across the genome was 0.038 (SD = 0.059). There were 2,949 SNPs with FST > 0.125. The correlation between estimates of FL and estimates of FST across the genome was -0.10 (SE = 0.006). Analysis of the gene content of the genomic regions with the 2000 SNPs with highest LRT for FL and high FST showed overrepresentation of genes with a regulatory function. Genes with biological functions associated with production, such as tissue development, anatomical structure, and animal organ development, were also overrepresented in regions with a high FST.
Collapse
Affiliation(s)
- Luis Gomez-Raya
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Wendy Mercedes Rauw
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | | | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Chik JK, Moiseeva V, Goel PK, Meinen BA, Koldewey P, An S, Mellone BG, Subramanian L, Cho US. Structures of CENP-C cupin domains at regional centromeres reveal unique patterns of dimerization and recruitment functions for the inner pocket. J Biol Chem 2019; 294:14119-14134. [PMID: 31366733 DOI: 10.1074/jbc.ra119.008464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.
Collapse
Affiliation(s)
- Jennifer K Chik
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Vera Moiseeva
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Pavitra K Goel
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ben A Meinen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Barbara G Mellone
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Lakxmi Subramanian
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
14
|
Piacentini L, Marchetti M, Bucciarelli E, Casale AM, Cappucci U, Bonifazi P, Renda F, Fanti L. A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma 2019; 128:503-520. [PMID: 31203392 DOI: 10.1007/s00412-019-00711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Marcella Marchetti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Paolo Bonifazi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Fioranna Renda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.,Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Laura Fanti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.
| |
Collapse
|
15
|
García Del Arco A, Edgar BA, Erhardt S. In Vivo Analysis of Centromeric Proteins Reveals a Stem Cell-Specific Asymmetry and an Essential Role in Differentiated, Non-proliferating Cells. Cell Rep 2019; 22:1982-1993. [PMID: 29466727 DOI: 10.1016/j.celrep.2018.01.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/17/2017] [Accepted: 01/25/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cells of the Drosophila midgut (ISCs) are the only mitotically dividing cells of the epithelium and, therefore, presumably the only epithelial cells that require functional kinetochores for microtubule spindle attachment during mitosis. The histone variant CENP-A marks centromeric chromatin as the site of kinetochore formation and spindle attachment during mitotic chromosome segregation. Here, we show that centromeric proteins distribute asymmetrically during ISC division. Whereas newly synthesized CENP-A is enriched in differentiating progeny, CENP-C is undetectable in these cells. Remarkably, CENP-A persists in ISCs for weeks without being replaced, consistent with it being an epigenetic mark responsible for maintaining stem cell properties. Furthermore, CENP-A and its loading factor CAL1 were found to be essential for post-mitotic, differentiating cells; removal of any of these factors interferes with endoreduplication. Taken together, we propose two additional roles of CENP-A: to maintain stem cell-unique properties and to regulate post-mitotic cells.
Collapse
Affiliation(s)
- Ana García Del Arco
- ZMBH, DKFZ-ZMBH-Alliance, and CellNetworks, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bruce A Edgar
- ZMBH, DKFZ-ZMBH-Alliance, and CellNetworks, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance, and CellNetworks, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Ciftci-Yilmaz S, Au WC, Mishra PK, Eisenstatt JR, Chang J, Dawson AR, Zhu I, Rahman M, Bilke S, Costanzo M, Baryshnikova A, Myers CL, Meltzer PS, Landsman D, Baker RE, Boone C, Basrai MA. A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics 2018; 210:203-218. [PMID: 30012561 PMCID: PMC6116949 DOI: 10.1534/genetics.118.301305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 11/18/2022] Open
Abstract
Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.
Collapse
Affiliation(s)
- Sultan Ciftci-Yilmaz
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica R Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joy Chang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Anthony R Dawson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | | | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Hoischen C, Yavas S, Wohland T, Diekmann S. CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres. PLoS One 2018; 13:e0192572. [PMID: 29509805 PMCID: PMC5839545 DOI: 10.1371/journal.pone.0192572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.
Collapse
Affiliation(s)
- Christian Hoischen
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| | - Sibel Yavas
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Stephan Diekmann
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| |
Collapse
|
18
|
García Del Arco A, Erhardt S. Post-translational Modifications of Centromeric Chromatin. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:213-231. [PMID: 28840239 DOI: 10.1007/978-3-319-58592-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulation of chromatin structures is important for the control of DNA processes such as gene expression, and misregulation of chromatin is implicated in diverse diseases. Covalent post-translational modifications of histones are a prominent way to regulate chromatin structure and different chromatin regions bear their specific signature of histone modifications. The composition of centromeric chromatin is significantly different from other chromatin structures and mainly defined by the presence of the histone H3-variant CENP-A. Here we summarize the composition of centromeric chromatin and what we know about its differential regulation by post-translational modifications.
Collapse
Affiliation(s)
- Ana García Del Arco
- Center for Molecular Biology of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- Cell Networks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Evolutionary Lessons from Species with Unique Kinetochores. CENTROMERES AND KINETOCHORES 2017; 56:111-138. [DOI: 10.1007/978-3-319-58592-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Hara M, Fukagawa T. Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:29-57. [PMID: 28840232 DOI: 10.1007/978-3-319-58592-5_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kinetochore is a large protein complex, which is assembled at the centromere of a chromosome to ensure faithful chromosome segregation during M-phase. The centromere in most eukaryotes is epigenetically specified by DNA sequence-independent mechanisms. The constitutive centromere-associated network (CCAN) is a subcomplex in the kinetochore that localizes to the centromere throughout the cell cycle. The CCAN has interfaces bound to the centromeric chromatin and the spindle microtubule-binding complex; therefore, it functions as a foundation of kinetochore formation. Here, we summarize recent progress in our understanding of the structure and organization of the CCAN. We also discuss an additional role of the CCAN in the maintenance of centromere position and dynamic reorganization of the CCAN.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals. Genetics 2016; 205:155-168. [PMID: 27838628 PMCID: PMC5223500 DOI: 10.1534/genetics.116.192690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023] Open
Abstract
The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals.
Collapse
|
22
|
CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS One 2016; 11:e0165078. [PMID: 27820823 PMCID: PMC5098787 DOI: 10.1371/journal.pone.0165078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo.
Collapse
|
23
|
Dimitrova YN, Jenni S, Valverde R, Khin Y, Harrison SC. Structure of the MIND Complex Defines a Regulatory Focus for Yeast Kinetochore Assembly. Cell 2016; 167:1014-1027.e12. [PMID: 27881300 PMCID: PMC5856483 DOI: 10.1016/j.cell.2016.10.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022]
Abstract
Kinetochores connect centromeric nucleosomes with mitotic-spindle microtubules through conserved, cross-interacting protein subassemblies. In budding yeast, the heterotetrameric MIND complex (Mtw1, Nnf1, Nsl1, Dsn1), ortholog of the metazoan Mis12 complex, joins the centromere-proximal components, Mif2 and COMA, with the principal microtubule-binding component, the Ndc80 complex (Ndc80C). We report the crystal structure of Kluyveromyces lactis MIND and examine its partner interactions, to understand the connection from a centromeric nucleosome to a much larger microtubule. MIND resembles an elongated, asymmetric Y; two globular heads project from a coiled-coil shaft. An N-terminal extension of Dsn1 from one head regulates interactions of the other head, blocking binding of Mif2 and COMA. Dsn1 phosphorylation by Ipl1/Aurora B relieves this autoinhibition, enabling MIND to join an assembling kinetochore. A C-terminal extension of Dsn1 recruits Ndc80C to the opposite end of the shaft. The structure and properties of MIND show how it integrates phospho-regulatory inputs for kinetochore assembly and disassembly.
Collapse
Affiliation(s)
- Yoana N Dimitrova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Roberto Valverde
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Yadana Khin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, 250 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-197. [PMID: 26849908 PMCID: PMC4867242 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
25
|
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma 2016; 126:145-163. [DOI: 10.1007/s00412-016-0579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
26
|
Richter MM, Poznanski J, Zdziarska A, Czarnocki-Cieciura M, Lipinszki Z, Dadlez M, Glover DM, Przewloka MR. Network of protein interactions within the Drosophila inner kinetochore. Open Biol 2016; 6:150238. [PMID: 26911623 PMCID: PMC4772809 DOI: 10.1098/rsob.150238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the Drosophila kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen-deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12-Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.
Collapse
Affiliation(s)
- Magdalena M Richter
- Department of Genetics, University of Cambridge, Cambridge, UK Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Anna Zdziarska
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Mariusz Czarnocki-Cieciura
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
27
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
28
|
Xiao T, Wongtrakoongate P, Trainor C, Felsenfeld G. CTCF Recruits Centromeric Protein CENP-E to the Pericentromeric/Centromeric Regions of Chromosomes through Unusual CTCF-Binding Sites. Cell Rep 2015; 12:1704-14. [PMID: 26321640 DOI: 10.1016/j.celrep.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/09/2015] [Accepted: 07/31/2015] [Indexed: 01/08/2023] Open
Abstract
The role of CTCF in stabilizing long-range interactions between chromatin sites essential for maintaining nuclear architecture is well established. Most of these interactions involve recruitment of the cohesin complex to chromatin via CTCF. We find that CTCF also interacts with the centromeric protein CENP-E both in vitro and in vivo. We identified CTCF sites in pericentric/centromeric DNA and found that, early in mitosis, CTCF binds and recruits CENP-E to these sites. Unlike most known CTCF genomic sites, the CTCF-binding sites in the pericentric/centromeric regions interact strongly with the C-terminal fingers of CTCF. Overexpression of a small CENP-E fragment, targeted to these CTCF sites, results in a delay in alignment of some chromosomes during mitosis, suggesting that the recruitment of CENP-E by CTCF is physiologically important. We conclude that CTCF helps recruit CENP-E to the centromere during mitosis and that it may do so through a structure stabilized by the CTCF/CENP-E complex.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540, USA
| | - Patompon Wongtrakoongate
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540, USA; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Cecelia Trainor
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540, USA.
| |
Collapse
|
29
|
Kapanidou M, Lee S, Bolanos-Garcia VM. BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol Med 2015; 21:364-72. [DOI: 10.1016/j.molmed.2015.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
|
30
|
Li S, Deng Z, Fu J, Xu C, Xin G, Wu Z, Luo J, Wang G, Zhang S, Zhang B, Zou F, Jiang Q, Zhang C. Spatial Compartmentalization Specializes the Function of Aurora A and Aurora B. J Biol Chem 2015; 290:17546-58. [PMID: 25987563 DOI: 10.1074/jbc.m115.652453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/20/2022] Open
Abstract
Aurora kinase A and B share great similarity in sequences, structures, and phosphorylation motif, yet they show different localizations and play distinct crucial roles. The factors that determine such differences are largely unknown. Here we targeted Aurora A to the localization of Aurora B and found that Aurora A phosphorylates the substrate of Aurora B and substitutes its function in spindle checkpoint. In return, the centrosome targeting of Aurora B substitutes the function of Aurora A in the mitotic entry. Expressing the chimera proteins of the Auroras with exchanged N termini in cells indicates that the divergent N termini are also important for their spatiotemporal localizations and functions. Collectively, we demonstrate that functional divergence of Aurora kinases is determined by spatial compartmentalization, and their divergent N termini also contribute to their spatial and functional differentiation.
Collapse
Affiliation(s)
- Si Li
- From the Ministry of Education Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064 and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoxuan Deng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingyan Fu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Caiyue Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhige Wu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Luo
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shuli Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fangdong Zou
- From the Ministry of Education Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064 and
| | - Qing Jiang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Mishra PK, Guo J, Dittman LE, Haase J, Yeh E, Bloom K, Basrai MA. Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Mol Biol Cell 2015; 26:2067-79. [PMID: 25833709 PMCID: PMC4472017 DOI: 10.1091/mbc.e14-08-1335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/27/2015] [Indexed: 11/25/2022] Open
Abstract
A novel Pat1-dependent mechanism is identified for the protection of kinetochore-associated Cse4 from ubiquitination in order to ensure faithful chromosome segregation and genomic stability. Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiasheng Guo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Lauren E Dittman
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
32
|
Abendroth C, Hofmeister A, Hake SB, Kamweru PK, Miess E, Dornblut C, Küffner I, Deng W, Leonhardt H, Orthaus S, Hoischen C, Diekmann S. The CENP-T C-terminus is exclusively proximal to H3.1 and not to H3.2 or H3.3. Int J Mol Sci 2015; 16:5839-63. [PMID: 25775162 PMCID: PMC4394509 DOI: 10.3390/ijms16035839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/17/2022] Open
Abstract
The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere-kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1(C96A) and H3.1(C110A) nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.
Collapse
Affiliation(s)
- Christian Abendroth
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Antje Hofmeister
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Sandra B Hake
- Department of Molecular Biology, Center for Integrated Protein Science Munich (CIPSM), Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität Munich, Schillerstr. 44, D-80336 Munich, Germany.
| | - Paul K Kamweru
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Elke Miess
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Carsten Dornblut
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Isabell Küffner
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Wen Deng
- Department of Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, D-82152 Munich, Germany.
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, D-82152 Munich, Germany.
| | | | - Christian Hoischen
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| | - Stephan Diekmann
- Molecular Biology, Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| |
Collapse
|
33
|
Huang Z, Ma L, Wang Y, Pan Z, Ren J, Liu Z, Xue Y. MiCroKiTS 4.0: a database of midbody, centrosome, kinetochore, telomere and spindle. Nucleic Acids Res 2014; 43:D328-34. [PMID: 25392421 PMCID: PMC4383938 DOI: 10.1093/nar/gku1125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We reported an updated database of MiCroKiTS 4.0 (http://microkit.biocuckoo.org) for proteins temporally and spatially localized in distinct subcellular positions including midbody, centrosome, kinetochore, telomere and mitotic spindle during cell division/mitosis. The database was updated from our previously developed database of MiCroKit 3.0, which contained 1489 proteins mostly forming super-complexes at midbody, centrosome and kinetochore from seven eukaryotes. Since the telomere and spindle apparatus are critical for cell division, the proteins localized at the two positions were also integrated. From the scientific literature, we curated 1872 experimentally identified proteins which at least locate in one of the five positions from eight species. Then the ortholog detection was performed to identify potential MiCroKiTS proteins from 144 eukaryotic organisms, which contains 66, 45 and 33 species of animals, fungi and plants, respectively. In total, 87 983 unique proteins with corresponding localization information were integrated into the database. The primary references of experimentally identified localizations were provided and the fluorescence microscope figures for the localizations of human proteins were shown. The orthologous relations between predicted and experimental localizations were also present. Taken together, we anticipate the database can serve as a useful resource for further analyzing the molecular mechanisms during cell division.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lili Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yongbo Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhicheng Pan
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zexian Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
34
|
Rošić S, Köhler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. ACTA ACUST UNITED AC 2014; 207:335-49. [PMID: 25365994 PMCID: PMC4226727 DOI: 10.1083/jcb.201404097] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SAT III RNA binds to the kinetochore component CENP-C and is required for correct assembly and function of the kinetochore at centromeres. Chromosome segregation requires centromeres on every sister chromatid to correctly form and attach the microtubule spindle during cell division. Even though centromeres are essential for genome stability, the underlying centromeric DNA is highly variable in sequence and evolves quickly. Epigenetic mechanisms are therefore thought to regulate centromeres. Here, we show that the 359-bp repeat satellite III (SAT III), which spans megabases on the X chromosome of Drosophila melanogaster, produces a long noncoding RNA that localizes to centromeric regions of all major chromosomes. Depletion of SAT III RNA causes mitotic defects, not only of the sex chromosome but also in trans of all autosomes. We furthermore find that SAT III RNA binds to the kinetochore component CENP-C, and is required for correct localization of the centromere-defining proteins CENP-A and CENP-C, as well as outer kinetochore proteins. In conclusion, our data reveal that SAT III RNA is an integral part of centromere identity, adding RNA to the complex epigenetic mark at centromeres in flies.
Collapse
Affiliation(s)
- Silvana Rošić
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Florian Köhler
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, and CellNetworks Excellence Cluster, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Lee S, Bolanos-Garcia VM. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Front Physiol 2014; 5:368. [PMID: 25324779 PMCID: PMC4179342 DOI: 10.3389/fphys.2014.00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
The control of chromosome segregation relies on the spindle assembly checkpoint (SAC), a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.
Collapse
Affiliation(s)
- Semin Lee
- Center for Biomedical Informatics, Harvard Medical School, Harvard University Boston, MA, USA
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University Oxford, UK
| |
Collapse
|
36
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|
37
|
Ghongane P, Kapanidou M, Asghar A, Elowe S, Bolanos-Garcia VM. The dynamic protein Knl1 - a kinetochore rendezvous. J Cell Sci 2014; 127:3415-23. [PMID: 25052095 DOI: 10.1242/jcs.149922] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Knl1 (also known as CASC5, UniProt Q8NG31) is an evolutionarily conserved scaffolding protein that is required for proper kinetochore assembly, spindle assembly checkpoint (SAC) function and chromosome congression. A number of recent reports have confirmed the prominence of Knl1 in these processes and provided molecular details and structural features that dictate Knl1 functions in higher organisms. Knl1 recruits SAC components to the kinetochore and is the substrate of certain protein kinases and phosphatases, the interplay of which ensures the exquisite regulation of the aforementioned processes. In this Commentary, we discuss the overall domain organization of Knl1 and the roles of this protein as a versatile docking platform. We present emerging roles of the protein interaction motifs present in Knl1, including the RVSF, SILK, MELT and KI motifs, and their role in the recruitment and regulation of the SAC proteins Bub1, BubR1, Bub3 and Aurora B. Finally, we explore how the regions of low structural complexity that characterize Knl1 are implicated in the cooperative interactions that mediate binding partner recognition and scaffolding activity by Knl1.
Collapse
Affiliation(s)
- Priyanka Ghongane
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Maria Kapanidou
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Adeel Asghar
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHUQ, 2705, Boulevard Laurier, T3-51, Québec, QC G1V 4G2, Canada
| | - Sabine Elowe
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHUQ, 2705, Boulevard Laurier, T3-51, Québec, QC G1V 4G2, Canada
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
38
|
Tian XP, Qian D, He LR, Huang H, Mai SJ, Li CP, Huang XX, Cai MY, Liao YJ, Kung HF, Zeng YX, Xie D. The telomere/telomerase binding factor PinX1 regulates paclitaxel sensitivity depending on spindle assembly checkpoint in human cervical squamous cell carcinomas. Cancer Lett 2014; 353:104-14. [PMID: 25045845 DOI: 10.1016/j.canlet.2014.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
Paclitaxel is a main ingredient in the combination chemotherapy treatment of advanced human cervical squamous cell carcinomas. We investigated the roles and underlying molecular mechanisms of PinX1 in cervical squamous cell carcinomas (CSCC) cells response to paclitaxel and its clinical significances. The expression dynamics of PinX1 was first examined by immunohistochemistry in 122 advanced CSCC patients treated with cisplatin/paclitaxel chemotherapy. The expression of PinX1 was significantly associated with the effects of cisplatin/paclitaxel chemotherapy in advanced CSCCs (P<0.05). High expression of PinX1 correlated with CSCC's response to cisplatin/paclitaxel chemotherapy, and was an independent predictor of shortened survival (P<0.05). A series of in vivo and in vitro assays were performed to elucidate the function of PinX1 on CSCC cells chemosensitivity to paclitaxel and underlying mechanisms. In CSCC cells, the levels of PinX1 were only associated with the cytotoxicity and sensitivity of paclitaxel, in which knockdown of PinX1 dramatically enhanced paclitaxel cytotoxicity, whereas the reestablishment of PinX1 levels substantially reduced the paclitaxel-induced killing effect. In addition, we identified that the ability of PinX1 to stabilize the tension between sister kinetochores and maintain the spindle assembly checkpoint was the main reason CSCC cells undergo apoptosis when treated with paclitaxel, and further studies demonstrated that shortened distance between sisters kinetochores by nocodazole confers upon PinX1-replenished cells a sensitivity to the death inducing paclitaxel effects. Furthermore, our study of CSCC cells xenografts in nude mice confirmed the role of PinX1 in paclitaxel sensitivity in vivo. Our data reveal that PinX1 could be used as a novel predictor for CSCC patient response to paclitaxel, and the role of PinX1-mediated paclitaxel sensitivity might represent a new direction for the development of a new generation of microtubule drugs.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Ru He
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Gynecology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang-Peng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Xia Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Ji Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hsiang-fu Kung
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
39
|
Bieniek J, Childress C, Swatski MD, Yang W. COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate 2014; 74:999-1011. [PMID: 24802614 DOI: 10.1002/pros.22815] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/02/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Previous studies have shown that COX-2 inhibitors inhibit cancer cell proliferation. However, the molecular mechanism remains elusive. METHODS Prostate cancer LNCaP, 22Rv1, and PC3 cells were cultured and treated with the COX-2 inhibitors celecoxib and CAY10404. Knockdown of COX-2 in LNCaP cells was carried out using lentiviral vector-loaded COX-2 shRNA. Cell cycle progression and cell proliferation were analyzed by flow cytometry, microscopy, cell counting, and the MTT assay. The antagonists of EP1, EP2, EP3, and EP4 were used to examine the effects of the PGE2 signaling. The effect of COX-2 inhibitors and COX-2 knockdown on expression of the kinetochore/centromere genes and proteins was determined by RT-PCR and immunoblotting. RESULTS Treatment with the COX-2 inhibitors celecoxib and CAY10404 or knockdown of COX-2 significantly inhibited prostate cancer cell proliferation. Flow-cytometric analysis and immunofluorescent staining confirmed the cell cycle arrested at the G2/M phase. Biochemical analysis showed that inhibition of COX-2 or suppression of COX-2 expression induced a dramatic down-regulation of key proteins in the kinetochore/centromere assembly, such as ZWINT, Cdc20, Ndc80, CENP-A, Bub1, and Plk1. Furthermore, the EP1 receptor antagonist SC51322, but not the EP2, EP3, and EP4 receptor antagonists, produced similar effects to the COX-2 inhibitors on cell proliferation and down-regulation of kinetochore/centromere proteins, suggesting that the effect of the COX-2 inhibition is through inactivation of the EP1 receptor signaling. CONCLUSIONS Our studies indicate that inhibition of COX-2 can arrest prostate cancer cell cycle progression through inactivation of the EP1 receptor signaling and down-regulation of kinetochore/centromere proteins.
Collapse
Affiliation(s)
- Jared Bieniek
- Department of Urology, Geisinger Clinic, Danville, Pennsylvania
| | | | | | | |
Collapse
|
40
|
Mon H, Lee JM, Mita K, Goldsmith MR, Kusakabe T. Chromatin-induced spindle assembly plays an important role in metaphase congression of silkworm holocentric chromosomes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:40-50. [PMID: 24291286 DOI: 10.1016/j.ibmb.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
The kinetochore plays important roles in cell cycle progression. Interactions between chromosomes and spindle microtubules allow chromosomes to congress to the middle of the cell and to segregate the sister chromatids into daughter cells in mitosis. The chromosome passenger complex (CPC), composed of the Aurora B kinase and its regulatory subunits INCENP, Survivin, and Borealin, plays multiple roles in these chromosomal events. In the genome of the silkworm, Bombyx mori, which has holocentric chromosomes, the CPC components and their molecular interactions were highly conserved. In contrast to monocentric species, however, the silkworm CPC co-localized with the chromatin-driven spindles on the upper side of prometaphase chromosomes without forming bipolar mitotic spindles. Depletion of the CPC by RNAi arrested the cell cycle progression at prometaphase and disrupted the microtubule network of the chromatin-driven spindles. Interestingly, depletion of mitotic centromere-associated kinesin (MCAK) recovered formation of the microtubule network but did not overcome the cell cycle arrest at prometaphase. These results suggest that the CPC modulates the chromatin-induced spindle assembly and metaphase congression of silkworm holocentric chromosomes.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kazuei Mita
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
41
|
Bolanos-Garcia VM. Formation of multiprotein assemblies in the nucleus: the spindle assembly checkpoint. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:151-74. [PMID: 24380595 DOI: 10.1016/b978-0-12-800046-5.00006-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Specific interactions within the cell must occur in a crowded environment and often in a narrow time-space framework to ensure cell survival. In the light that up to 10% of individual protein molecules present at one time in mammalian cells mediate signal transduction, the establishment of productive, specific interactions is a remarkable achievement. The spindle assembly checkpoint (SAC) is an evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle that ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. The function of the SAC involves communication with the kinetochore, an essential multiprotein complex crucial for chromosome segregation that assembles on mitotic or meiotic centromeres to link centromeric DNA with microtubules. Interactions in the SAC and kinetochore-microtubule network often involve the reversible assembly of large multiprotein complexes in which regions of the polypeptide chain that exhibit low structure complexity undergo a disorder-to-order transition. The confinement and high density of protein molecules in the cell has a profound effect on the stability, folding rate, and biological functions of individual proteins and protein assemblies. Here, I discuss the role of large and highly flexible surfaces that mediate productive intermolecular interactions in SAC signaling and postulate that macromolecular crowding contributes to the exquisite regulation that is required for the timely and accurate segregation of chromosomes in higher organisms.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.
| |
Collapse
|
42
|
Caldas GV, DeLuca JG. KNL1: bringing order to the kinetochore. Chromosoma 2013; 123:169-81. [PMID: 24310619 DOI: 10.1007/s00412-013-0446-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
Abstract
KNL1 is an evolutionarily conserved kinetochore-associated protein essential for accurate chromosome segregation in eukaryotic cells. This large scaffold protein, predicted to be almost entirely unstructured, is involved in diverse mitotic processes including kinetochore assembly, chromosome congression, and mitotic checkpoint signaling. How this kinetochore "hub" coordinates protein-protein interactions spatially and temporally during mitosis to orchestrate these processes is an area of active investigation. Here we summarize the current understanding of KNL1 and discuss possible mechanisms by which this protein actively contributes to multiple aspects of mitotic progression.
Collapse
Affiliation(s)
- Gina V Caldas
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
43
|
Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1. Genetics 2013; 195:369-79. [PMID: 23893485 DOI: 10.1534/genetics.113.155291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kinetochore (centromeric DNA and associated protein complex) is essential for faithful chromosome segregation and maintenance of genome stability. Here we report that an evolutionarily conserved protein Pat1 is a structural component of Saccharomyces cerevisiae kinetochore and associates with centromeres in a NDC10-dependent manner. Consistent with a role for Pat1 in kinetochore structure and function, a deletion of PAT1 results in delay in sister chromatid separation, errors in chromosome segregation, and defects in structural integrity of centromeric chromatin. Pat1 is involved in topological regulation of minichromosomes as altered patterns of DNA supercoiling were observed in pat1Δ cells. Studies with pat1 alleles uncovered an evolutionarily conserved region within the central domain of Pat1 that is required for its association with centromeres, sister chromatid separation, and faithful chromosome segregation. Taken together, our data have uncovered a novel role for Pat1 in maintaining the structural integrity of centromeric chromatin to facilitate faithful chromosome segregation and proper kinetochore function.
Collapse
|
44
|
Venkei Z, Przewloka MR, Ladak Y, Albadri S, Sossick A, Juhasz G, Novák B, Glover DM. Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore. Open Biol 2013; 2:110032. [PMID: 22645658 PMCID: PMC3352094 DOI: 10.1098/rsob.110032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/17/2012] [Indexed: 12/26/2022] Open
Abstract
The formation of kinetochores shortly before each cell division is a prerequisite for proper chromosome segregation. The synchronous mitoses of Drosophila syncytial embryos have provided an ideal in vivo system to follow kinetochore assembly kinetics and so address the question of how kinetochore formation is regulated. We found that the nuclear exclusion of the Spc105/KNL1 protein during interphase prevents precocious assembly of the Mis12 complex. The nuclear import of Spc105 in early prophase and its immediate association with the Mis12 complex on centromeres are thus the first steps in kinetochore assembly. The cumulative kinetochore levels of Spc105 and Mis12 complex then determine the rate of Ndc80 complex recruitment commencing only after nuclear envelope breakdown. The carboxy-terminal part of Spc105 directs its nuclear import and is sufficient for the assembly of all core kinetochore components and CENP-C, when localized ectopically to centrosomes. Super-resolution microscopy shows that carboxy-terminus of Spc105 lies at the junction of the Mis12 and Ndc80 complexes on stretched kinetochores. Our study thus indicates that physical accessibility of kinetochore components plays a crucial role in the regulation of Drosophila kinetochore assembly and leads us to a model in which Spc105 is a licensing factor for its onset.
Collapse
Affiliation(s)
- Zsolt Venkei
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH , UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao J, Liu X, Sakuno T, Li W, Xi Y, Aravamudhan P, Joglekar A, Li W, Watanabe Y, He X. Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast. J Biol Chem 2013; 288:19184-96. [PMID: 23661703 DOI: 10.1074/jbc.m113.471276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization.
Collapse
Affiliation(s)
- Jianhui Yao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gabrielli B, Brown M. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv Cancer Res 2013; 116:1-37. [PMID: 23088867 DOI: 10.1016/b978-0-12-394387-3.00001-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase inhibitors exhibit pleiotropic effects on cell functions, both in vivo and in vitro. One of the more dramatic effects of these drugs is their ability to disrupt normal mitotic division, which is a significant contributor to the anticancer properties of these drugs. The most important feature of the disrupted mitosis is that drug treatment overcomes the mitotic spindle assembly checkpoint and drives mitotic slippage, but in a manner that triggers apoptosis. The mechanism by which histone deacetylase inhibitors affect mitosis is now becoming clearer through the identification of a number of chromatin and nonchromatin protein targets that are critical to the regulation of normal mitotic progression and cell division. These proteins are directly regulated by acetylation and deacetylation, or in some cases indirectly through the acetylation of essential partner proteins. There appears to be little contribution from deacetylase inhibitor-induced transcriptional changes to the mitotic effects of these drugs. The overall mitotic phenotype of drug treatment appears to be the sum of these disrupted mechanisms.
Collapse
Affiliation(s)
- Brian Gabrielli
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
47
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
48
|
Varma D, Salmon ED. The KMN protein network--chief conductors of the kinetochore orchestra. J Cell Sci 2013; 125:5927-36. [PMID: 23418356 DOI: 10.1242/jcs.093724] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful completion of mitosis requires that sister kinetochores become attached end-on to the plus ends of spindle microtubules (MTs) in prometaphase, thereby forming kinetochore microtubules (kMTs) that tether one sister to one spindle pole and the other sister to the opposite pole. Sites for kMT attachment provide at least four key functions: robust and dynamic kMT anchorage; force generation that can be coupled to kMT plus-end dynamics; correction of errors in kMT attachment; and control of the spindle assembly checkpoint (SAC). The SAC typically delays anaphase until chromosomes achieve metaphase alignment with each sister kinetochore acquiring a full complement of kMTs. Although it has been known for over 30 years that MT motor proteins reside at kinetochores, a highly conserved network of protein complexes, called the KMN network, has emerged in recent years as the primary interface between the kinetochore and kMTs. This Commentary will summarize recent advances in our understanding of the role of the KMN network for the key kinetochore functions, with a focus on human cells.
Collapse
Affiliation(s)
- Dileep Varma
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| | | |
Collapse
|
49
|
Karess RE, Wassmann K, Rahmani Z. New insights into the role of BubR1 in mitosis and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:223-73. [PMID: 24016527 DOI: 10.1016/b978-0-12-407694-5.00006-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BubR1 is a critical component of the spindle assembly checkpoint, the surveillance mechanism that helps maintain the high fidelity of mitotic chromosome segregation by preventing cells from initiating anaphase if one or more kinetochores are not attached to the spindle. BubR1 also helps promote the establishment of stable kinetochore-microtubule attachments during prometaphase. In this chapter, we review the structure, functions, and regulation of BubR1 in these "classical roles" at the kinetochore. We discuss its recruitment to kinetochores, its assembly into the inhibitor of anaphase progression, and the importance of its posttranslational modifications. We also consider the evidence for its participation in other roles beyond mitosis, such as the meiosis-specific processes of recombination and prophase arrest of the first meiotic division, the cellular response to DNA damage, and in the regulation of centrosome and basal body function. Finally, studies are presented linking BubR1 dysfunction or misregulation to aging and human disease, particularly cancer.
Collapse
Affiliation(s)
- Roger E Karess
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris Diderot-Paris 7, Paris, France.
| | | | | |
Collapse
|
50
|
Eskat A, Deng W, Hofmeister A, Rudolphi S, Emmerth S, Hellwig D, Ulbricht T, Döring V, Bancroft JM, McAinsh AD, Cardoso MC, Meraldi P, Hoischen C, Leonhardt H, Diekmann S. Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex. PLoS One 2012; 7:e44717. [PMID: 23028590 PMCID: PMC3445539 DOI: 10.1371/journal.pone.0044717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment.
Collapse
Affiliation(s)
| | - Wen Deng
- Department of Biology II, Center for Integrated Protein Science, Ludwig Maximilians University Munich, Planegg-Martinsried, Munich, Germany
| | | | | | | | | | | | | | - James M. Bancroft
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | | | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science, Ludwig Maximilians University Munich, Planegg-Martinsried, Munich, Germany
| | | |
Collapse
|