1
|
Woodworth MH, Conrad RE, Haldopoulos M, Pouch SM, Babiker A, Mehta AK, Sitchenko KL, Wang CH, Strudwick A, Ingersoll JM, Philippe C, Lohsen S, Kocaman K, Lindner BG, Hatt JK, Jones RM, Miller C, Neish AS, Friedman-Moraco R, Karadkhele G, Liu KH, Jones DP, Mehta CC, Ziegler TR, Weiss DS, Larsen CP, Konstantinidis KT, Kraft CS. Fecal microbiota transplantation promotes reduction of antimicrobial resistance by strain replacement. Sci Transl Med 2023; 15:eabo2750. [PMID: 37910603 PMCID: PMC10821315 DOI: 10.1126/scitranslmed.abo2750] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2023] [Indexed: 11/03/2023]
Abstract
Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816). Eleven participants were enrolled and randomized 1:1 to FMT or an observation period followed by delayed FMT if stool cultures were MDRO positive at day 36. Participants who were MDRO positive after one FMT were treated with a second FMT. At last visit, eight of nine patients who completed all treatments were MDRO culture negative. FMT-treated participants had longer time to recurrent MDRO infection versus PREMIX-eligible controls who were not treated with FMT. Key taxa (Akkermansia muciniphila, Alistipes putredinis, Phocaeicola dorei, Phascolarctobacterium faecium, Alistipes species, Mesosutterella massiliensis, Barnesiella intestinihominis, and Faecalibacterium prausnitzii) from the single feces donor used in the study that engrafted in recipients and metabolites such as short-chain fatty acids and bile acids in FMT-responding participants uncovered leads for rational microbiome therapeutic and diagnostic development. Metagenomic analyses revealed a previously unobserved mechanism of MDRO eradication by conspecific strain competition in an FMT-treated subset. Susceptible Enterobacterales strains that replaced baseline extended-spectrum β-lactamase-producing strains were not detectable in donor microbiota manufactured as FMT doses but in one case were detectable in the recipient before FMT. These data suggest that FMT may provide a path to exploit strain competition to reduce MDRO colonization.
Collapse
Affiliation(s)
- Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | - Roth E Conrad
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | | | - Stephanie M. Pouch
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Transplant Center; Atlanta, Georgia, 30322, USA
| | - Kaitlin L. Sitchenko
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Charlotte H. Wang
- Emory College of Arts and Sciences, Emory University; Atlanta, Georgia, 30322, USA
| | - Amanda Strudwick
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Jessica M. Ingersoll
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Cécile Philippe
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Sarah Lohsen
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Kumru Kocaman
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Blake G. Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Janet K. Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta, Georgia, 30332, USA
| | - Rheinallt M. Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Candace Miller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Rachel Friedman-Moraco
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | | | - Ken H. Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University; Atlanta, Georgia, 30322, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University; Atlanta, Georgia, 30322, USA
| | - C. Christina Mehta
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University; Atlanta, GA, 30322, USA
| | - Thomas R. Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - David S. Weiss
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
| | | | | | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| |
Collapse
|
2
|
Mansoor AER, O'Neil CA, Kwon JH. The role of microbiome-based therapeutics for the reduction and prevention of antimicrobial-resistant organism colonization. Anaerobe 2023; 83:102772. [PMID: 37572864 DOI: 10.1016/j.anaerobe.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The gut is host to a diverse array of microbiota that constitute a complex ecological system crucial to human physiology. Disruptors to the normal host microbiota, such as antimicrobials, can cause a loss of species diversity in the gut, reducing its ability to resist colonization by invading pathogens and potentially leading to colonization with antimicrobial resistant organisms (AROs). ARO negatively impact gut health by disrupting the usual heterogeneity of gut microbiota and have the potential to cause systemic disease. In recent years, fecal microbiota transplantation (FMT) has been increasingly explored in the management of specific disease states such as Clostridioides difficile infection (CDI). Promising data from management of CDI has led to considerable interest in understanding the role of therapeutics to restore the gut microbiota to a healthy state. This review aims to discuss key studies that highlight the current landscape, and explore existing clinical evidence, for the use of FMT and microbiome-based therapeutics in combating intestinal colonization with ARO. We also explore potential future directions of such therapeutics and discuss unaddressed needs in this field that merit further investigation.
Collapse
Affiliation(s)
- Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Caroline A O'Neil
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, 4523 Clayton Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Ren Q, Zhang M, Xue R, Liu T, Yang Z, Yang Z. Purification and characterization of a novel low-molecular-weight antimicrobial peptide produced by Lactiplantibacillus plantarum NMGL2. Int J Biol Macromol 2023; 248:125932. [PMID: 37482152 DOI: 10.1016/j.ijbiomac.2023.125932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
The present study aimed to purify and characterize a novel low-molecular-weight antimicrobial peptide (AMP) named as PNMGL2 produced by Lactiplantibacillus plantarum NMGL2. The AMP was effectively separated and purified by ethyl acetate extraction and DEAE-Sepharose anion exchange chromatography. Tricine-SDS-PAGE of the purified AMP showed a major protein band below 1.7 kDa, which was identified by MALDI-TOF MS to be a hexapeptide LNFLKK (761.95 Da), and structurally characterized to be combination of helixes and random coil by a PEP-FOLD 3 De novo approach. The antimicrobial activity of LNFLKK was confirmed by chemical synthesis of the peptide that showed clear inhibition (MIC 7.8 mg/mL) against both Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), and Gram-negative bacteria (Enterobacter sakazakii, Escherichia coli and Shigella flexneri). PNMGL2 was pH resistant (pH 2-9), heat stable (121 °C, 30 min), and protease sensitive. Treatment of UV rays, sodium chloride and organic solvents did not decrease the activity. Sequencing of the whole genome of L. plantarum NMGL2 revealed presence of a bacteriocin gene cluster with two putative bacteriocin genes (ORF4 and ORF5) that were not expressed, confirming the significance of PNMGL2 contributing the antimicrobial activity of the strain. This study demonstrated the low-molecular-weight AMP that was uncharacterized in the relevant available databases, suggesting its potential application as a novel natural food preservative.
Collapse
Affiliation(s)
- Qingxia Ren
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Rui Xue
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Tongji Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
4
|
Joshi AA, Vocanson M, Nicolas JF, Wolf P, Patra V. Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Front Immunol 2023; 14:1125635. [PMID: 36761743 PMCID: PMC9907850 DOI: 10.3389/fimmu.2023.1125635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that significantly affects the patient's quality of life. A disrupted skin barrier, type 2 cytokine-dominated inflammation, and microbial dysbiosis with increased Staphylococcus aureus colonization are critical components of AD pathogenesis. Patients with AD exhibit decreased expression of antimicrobial peptides (AMPs) which is linked to increased colonization by Staphylococcus aureus. The skin microbiome itself is a source of several AMPs. These host- and microbiome-derived AMPs define the microbial landscape of the skin based on their differential antimicrobial activity against a range of skin microbes or their quorum sensing inhibitory properties. These are particularly important in preventing and limiting dysbiotic colonization with Staphylococcus aureus. In addition, AMPs are critical for immune homeostasis. In this article, we share our perspectives about the implications of microbial derived AMPs in AD patients and their potential effects on overlapping factors involved in AD. We argue and discuss the potential of bacterial AMPs as therapeutics in AD.
Collapse
Affiliation(s)
- Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jean-Francois Nicolas
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,Department of Allergology & Clinical Immunology, Lyon-Sud University Hospital, Lyon, France
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,*Correspondence: Vijaykumar Patra,
| |
Collapse
|
5
|
Fernández-Fernández R, Abdullahi IN, González-Azcona C, Ulloa A, Martínez A, García-Vela S, Höfle U, Zarazaga M, Lozano C, Torres C. Detection of antimicrobial producing Staphylococcus from migratory birds: Potential role in nasotracheal microbiota modulation. Front Microbiol 2023; 14:1144975. [PMID: 37113241 PMCID: PMC10126283 DOI: 10.3389/fmicb.2023.1144975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
A collection of 259 staphylococci of 13 different species [212 coagulase-negative (CoNS) and 47 coagulase-positive (CoPS)] recovered from nasotracheal samples of 87 healthy nestling white storks was tested by the spot-on-lawn method for antimicrobial-activity (AA) against 14 indicator bacteria. Moreover, extracts of AP isolates were obtained [cell-free-supernatants (CFS) both crude and concentrated and butanol extracts] and tested against the 14 indicator bacteria. The microbiota modulation capacity of AP isolates was tested considering: (a) intra-sample AA, against all Gram-positive bacteria recovered in the same stork nasotracheal sample; (b) inter-sample AA against a selection of representative Gram-positive bacteria of the nasotracheal microbiota of all the storks (30 isolates of 29 different species and nine genera). In addition, enzymatic susceptibility test was carried out in selected AP isolates and bacteriocin encoding genes was studied by PCR/sequencing. In this respect, nine isolates (3.5%; seven CoNS and two CoPS) showed AA against at least one indicator bacteria and were considered antimicrobial-producing (AP) isolates. The AP isolates showed AA only for Gram-positive bacteria. Three of these AP isolates (S. hominis X3764, S. sciuri X4000, and S. chromogenes X4620) revealed AA on all extract conditions; other four AP isolates only showed activity in extracts after concentration; the remaining two AP isolates did not show AA in any of extract conditions. As for the microbiota modulation evaluation, three of the nine AP-isolates revealed intra-sample AA. It is to highlight the potent inter-sample AA of the X3764 isolate inhibiting 73% of the 29 representative Gram-positive species of the nasotracheal stork microbiota population. On the other hand, enzymatic analysis carried out in the two highest AP isolates (X3764 and X4000) verified the proteinaceous nature of the antimicrobial compound and PCR analysis revealed the presence of lantibiotic-like encoding genes in the nine AP isolates. In conclusion, these results show that nasotracheal staphylococci of healthy storks, and especially CoNS, produce antimicrobial substances that could be important in the modulations of their nasal microbiota.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Adriana Ulloa
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Agustí Martínez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Sara García-Vela
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
- Department of Food Science, University of Laval, Québec City, QC, Canada
| | - Ursula Höfle
- SaBio (Health and Biotechnology) Research Group, Game and Wildlife Research Institute, Spanish National Research Council/University of Castilla–La Mancha, Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Logroño, Spain
- *Correspondence: Carmen Torres,
| |
Collapse
|
6
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
7
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
In-Vitro Characterization of Growth Inhibition against the Gut Pathogen of Potentially Probiotic Lactic Acid Bacteria Strains Isolated from Fermented Products. Microorganisms 2021; 9:microorganisms9102141. [PMID: 34683462 PMCID: PMC8537437 DOI: 10.3390/microorganisms9102141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58-100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.
Collapse
|
9
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
10
|
Wei S, Zhao X, Yu J, Yin S, Liu M, Bo R, Li J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul Toxicol Pharmacol 2021; 124:104999. [PMID: 34242706 DOI: 10.1016/j.yrtph.2021.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Tea tree oil (TTO) is a popular topical use to treat skin infections. However, its poor aqueous solubility and stability have substantially limited its widespread application, including oral administration that might be therapeutic for enteric infections. In this study, mechanical ultrasonic methods were used to prepare TTO nanoemulsion (nanoTTO) with a mean droplet diameter of 161.80 nm ± 3.97, polydispersity index of 0.21 ± 0.01, and zeta potential of -12.33 ± 0.72 mV. The potential toxicity of nanoTTO was assessed by studying the oral median lethal dose (LD50) and repeated 28-day oral toxicity to provide a reference for in vivo application. Results showed that nanoTTO had no phase separation under a centrifugation test and displayed good stability during storage at -20, 4 and 25 °C over 60 days. Repeated-dose 28-day oral toxicity evaluation revealed no significant effects on growth and behavior. Assessments of hematology, clinical biochemistry, and histopathology indicated no obvious adverse effects in mice at 50, 100 and 200 mg/mL. These data suggest that nanoTTO can be considered a potential antimicrobial agent by oral administration due to its inhibitory effect on bacteria and relatively lower toxicity.
Collapse
Affiliation(s)
- SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Postgraduate Research &Practice Innovation Program of Jiangsu Province, China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jie Yu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, PR China
| | - ShaoJie Yin
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
11
|
Abstract
Clostridioides difficile is a leading cause of health care-associated infections worldwide. These infections are transmitted by C. difficile′s metabolically dormant, aerotolerant spore form. Functional spore formation depends on the assembly of two protective layers, a thick layer of modified peptidoglycan known as the cortex layer and a multilayered proteinaceous meshwork known as the coat. We previously identified two spore morphogenetic proteins, SpoIVA and SipL, that are essential for recruiting coat proteins to the developing forespore and making functional spores. While SpoIVA and SipL directly interact, the identities of the proteins they recruit to the forespore remained unknown. Here, we used mass spectrometry-based affinity proteomics to identify proteins that interact with the SpoIVA-SipL complex. These analyses identified the Peptostreptococcaceae family-specific, sporulation-induced bitopic membrane protein CD3457 (renamed SpoVQ) as a protein that interacts with SipL and SpoIVA. Loss of SpoVQ decreased heat-resistant spore formation by ∼5-fold and reduced cortex thickness ∼2-fold; the thinner cortex layer of ΔspoVQ spores correlated with higher levels of spontaneous germination (i.e., in the absence of germinant). Notably, loss of SpoVQ in either spoIVA or sipL mutants prevented cortex synthesis altogether and greatly impaired the localization of a SipL-mCherry fusion protein around the forespore. Thus, SpoVQ is a novel regulator of C. difficile cortex synthesis that appears to link cortex and coat formation. The identification of SpoVQ as a spore morphogenetic protein further highlights how Peptostreptococcaceae family-specific mechanisms control spore formation in C. difficile. IMPORTANCE The Centers for Disease Control has designated Clostridioides difficile as an urgent threat because of its intrinsic antibiotic resistance. C. difficile persists in the presence of antibiotics in part because it makes metabolically dormant spores. While recent work has shown that preventing the formation of infectious spores can reduce C. difficile disease recurrence, more selective antisporulation therapies are needed. The identification of spore morphogenetic factors specific to C. difficile would facilitate the development of such therapies. In this study, we identified SpoVQ (CD3457) as a spore morphogenetic protein specific to the Peptostreptococcaceae family that regulates the formation of C. difficile’s protective spore cortex layer. SpoVQ acts in concert with the known spore coat morphogenetic factors, SpoIVA and SipL, to link formation of the protective coat and cortex layers. These data reveal a novel pathway that could be targeted to prevent the formation of infectious C. difficile spores.
Collapse
|
12
|
Fachi JL, Sécca C, Rodrigues PB, Mato FCPD, Di Luccia B, Felipe JDS, Pral LP, Rungue M, Rocha VDM, Sato FT, Sampaio U, Clerici MTPS, Rodrigues HG, Câmara NOS, Consonni SR, Vieira AT, Oliveira SC, Mackay CR, Layden BT, Bortoluci KR, Colonna M, Vinolo MAR. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J Exp Med 2020; 217:133544. [PMID: 31876919 PMCID: PMC7062529 DOI: 10.1084/jem.20190489] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Microbiota-derived acetate coordinates innate immune responses during intestinal Clostridium difficile infection through its cognate receptor FFAR2. Acetate accelerates early neutrophil recruitment and increases ILC3 expression of the IL-1 receptor, boosting ILC3 production of IL-22 in response to neutrophil-derived IL-1β. Antibiotic-induced dysbiosis is a key predisposing factor for Clostridium difficile infections (CDIs), which cause intestinal disease ranging from mild diarrhea to pseudomembranous colitis. Here, we examined the impact of a microbiota-derived metabolite, short-chain fatty acid acetate, on an acute mouse model of CDI. We found that administration of acetate is remarkably beneficial in ameliorating disease. Mechanistically, we show that acetate enhances innate immune responses by acting on both neutrophils and ILC3s through its cognate receptor free fatty acid receptor 2 (FFAR2). In neutrophils, acetate-FFAR2 signaling accelerates their recruitment to the inflammatory sites, facilitates inflammasome activation, and promotes the release of IL-1β; in ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor, which boosts IL-22 secretion in response to IL-1β. We conclude that microbiota-derived acetate promotes host innate responses to C. difficile through coordinate action on neutrophils and ILC3s.
Collapse
Affiliation(s)
- José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Felipe Cézar Pinheiro de Mato
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcella Rungue
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Victor de Melo Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabio Takeo Sato
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ulliana Sampaio
- Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | - Hosana Gomes Rodrigues
- Laboratory of Nutrients & Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Sílvio Roberto Consonni
- Department of Biochemistry & Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angélica Thomaz Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL.,Jesse Brown Veterans Medical Center, Chicago, IL
| | - Karina Ramalho Bortoluci
- Center for Cellular and Molecular Therapy, Federal University of São Paulo, Vl Clementino, São Paulo, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster, Campinas, Brazil
| |
Collapse
|
13
|
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. J Bacteriol 2020; 202:JB.00387-20. [PMID: 32817091 PMCID: PMC7549369 DOI: 10.1128/jb.00387-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly. The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.
Collapse
|
14
|
Maestri AC, Raboni SM, Morales HMP, Ferrari LF, Tuon FFB, Losso A, Marconi C, Nogueira KDS. Multicenter study of the epidemiology of Clostridioides difficile infection and recurrence in southern Brazil. Anaerobe 2020; 64:102238. [PMID: 32717474 DOI: 10.1016/j.anaerobe.2020.102238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023]
Abstract
Clostridioides (Clostridium) difficile is the main etiology underlying antibiotic-associated diarrhea (AAD). Still, few Brazilian data are available on this infection. The aims of this multicenter study were to identify the prevalence, clinical characteristics, and outcomes of C. difficile infection (CDI) in patients with antibiotic associated diarrhea at eight hospitals in Curitiba, southern Brazil, during the years 2017-2019. Stool samples were tested using enzyme immunoassay for glutamate dehydrogenase antigen (GDH) and A/B toxins. Positive GDH samples were further evaluated by real-time polymerase chain reaction (PCR) for the presence of genes encoding toxin B (tcdB), binary toxin (cdt), and marker of hypervirulent C. difficile strain (tcdC deletion). The prevalence of CDI in 351 patients with AAD included in the study was 17.7% (n = 62). Among the CDI cases, tcdB was positive in all 62 stool samples, while cdt was positive in 10 samples, and tcdC deletion was positive in only two. Carriage of carbapenem-resistant Gram-negative bacilli, previous hospitalization, and use of broad-spectrum cephalosporin and carbapenem were associated with CDI. Among patients with CDI, 64.5% presented with severe diarrhea, and 8% (5/62) progressed with colitis and required intensive care. The 30-day mortality was 24% (15/62), and the CDI-associated mortality was 4.8% (3/62). Overall, 83.8% (52/62) of the patients achieved primary cure, and 20.8% of the evaluated patients (10/48) presented CDI recurrence. The treatment administered was not significantly associated with the 60-day recurrence or mortality. In conclusion, we reported in this study data of prevalence and recurrence rates of CDI in patients with AAD and evaluated the number of severe cases and infection-related mortality, which were up to now unknown in Southern Brazilian hospitals.
Collapse
Affiliation(s)
- Adriane Ceschin Maestri
- Laboratory of Bacteriology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua Padre Camargo, 280 - Alto da Glória, CEP: 80.062-240, Curitiba, Paraná, Brazil.
| | - Sonia Mara Raboni
- Infectious Diseases Unit, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181 - Alto da Glória, CEP: 80.060-900, Curitiba, Paraná, Brazil.
| | - Hugo Manuel Paz Morales
- Infectious Diseases Unit, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181 - Alto da Glória, CEP: 80.060-900, Curitiba, Paraná, Brazil; Infectious Diseases Unit, Hospital Erasto Gaertner, Rua Dr. Ovande do Amaral, 201 - Jardim das Américas, CEP: 81520-060, Curitiba, Paraná, Brazil.
| | - Leonardo Filipetto Ferrari
- Medical School, Universidade Federal do Paraná, Rua Padre Camargo, 280, Alto da Glória, CEP: 80.062-240, Curitiba, Paraná, Brazil.
| | - Felipe Francisco Bondan Tuon
- Infectious Diseases Unit, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181 - Alto da Glória, CEP: 80.060-900, Curitiba, Paraná, Brazil; Laboratory of Emerging Infectious Diseases (LEID), Pontifícia Universidade do Paraná, Rua Imaculada Conceição, 1155 - Prado Velho, CEP: 80215-901, Curitiba, Paraná, Brazil.
| | - Alexandre Losso
- Medical School, Universidade Federal do Paraná, Rua Padre Camargo, 280, Alto da Glória, CEP: 80.062-240, Curitiba, Paraná, Brazil.
| | - Camila Marconi
- Basic Pathology Department, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100 - Jardim das Américas, CEP: 81531-980, Curitiba, Paraná, Brazil.
| | - Keite da Silva Nogueira
- Laboratory of Bacteriology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Rua Padre Camargo, 280 - Alto da Glória, CEP: 80.062-240, Curitiba, Paraná, Brazil; Basic Pathology Department, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100 - Jardim das Américas, CEP: 81531-980, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Li S, Zhang H, Xiao J, Yuan T, Shu Z, Min Y, Xu W, Yin Y, Zhang X. Streptococcus pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus aureus and Streptococcus pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Front Cell Infect Microbiol 2020; 10:358. [PMID: 32766168 PMCID: PMC7379148 DOI: 10.3389/fcimb.2020.00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidences demonstrate that microorganism and their products protect against bacterial and viral pathogens through various mechanisms including immunomodulation. Streptococcus pneumoniae endopeptidase O (PepO), a pneumococcal virulence protein, has been proven to enhance the phagocytosis of Staphylococcus aureus and Streptococcus pneumoniae by macrophages in our previous study, where we detected the down regulation of SH2 domain-containing inositol phosphatase 1 (SHIP1) and the up regulation of complement receptor 3 (CR3) in PepO-stimulated macrophages. In the present study, using SHIP1 over-expression plasmid and CR3 siRNA, we proved that the down regulation of SHIP1 and the up regulation of CR3 mediate the enhanced phagocytosis of S. aureus and S. pneumoniae by PepO-stimulated macrophages. The down regulation of SHIP1 also mediates the up regulation of CR3. To further determine whether PepO protects against respiratory pathogens, we constructed a mouse model with intranasal infection of S. aureus or S. pneumoniae and found that PepO significantly promoted their clearance. The down regulation of SHIP1 and the up regulation of CR3 also play a role in this process. This study provides a new preventive and therapeutic option for respiratory infectious diseases and lays the theoretical basis for the development of PepO as an immunomodulation agent.
Collapse
Affiliation(s)
- Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Taixian Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yajun Min
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Lin H, Wang Q, Liu L, Chen Z, Das R, Zhao Y, Mao D, Luo Y. Colonization of Mice With Amoxicillin-Associated Klebsiella variicola Drives Inflammation via Th1 Induction and Treg Inhibition. Front Microbiol 2020; 11:1256. [PMID: 32670220 PMCID: PMC7326774 DOI: 10.3389/fmicb.2020.01256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
β-Lactam antibiotics can increase the resistance and virulence of individual intestinal microorganisms, which may affect host physiology and health. Klebsiella, a crucial gut inhabitant, has been confirmed to be resistant to most β-lactam antibiotics and contributes to the etiology of inflammatory bowel disease (IBD). In this study, the influence of amoxicillin (AMO) on Klebsiella and its role in colitis was investigated in an antibiotic cocktail (ABx) murine model. The results suggested that a 7-day AMO treatment significantly enriched the abundance of Klebsiella and enhanced serum resistance, antibiotic resistance, and biofilm formation ability of Klebsiella variicola (K. variicola) compared to the wild-type strain in the control group mice. Colonization of mice with the AMO-associated K. variicola could induce Th1 cells and inhibit Treg differentiation to promote inflammation in ABx murine model. In addition, inoculation of AMO-associated K. variicola in dextran sodium sulfate (DSS)-induced colitis murine model mice also confirmed that K. variicola colonization exacerbated inflammation as assessed by increased TNF-α, IFN-γ, IL-17a, and disease activity (DAI) levels; decreased colon length and bodyweight; and a disrupted Th1/Treg balance. The results of our study demonstrate that AMO enhances Klebsiella virulence in mice by disrupting the T cell equilibrium to exacerbate colitis, thereby providing a reference for proper antibiotic prescription.
Collapse
Affiliation(s)
- Huai Lin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China.,Hebei Key Laboratory of Air Pollution Cause and Impact (preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| | - Lei Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Ranjit Das
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Yanhui Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Sciences and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Merrick B, Allen L, Masirah M Zain N, Forbes B, Shawcross DL, Goldenberg SD. Regulation, risk and safety of Faecal Microbiota Transplant. Infect Prev Pract 2020; 2:100069. [PMID: 34316559 PMCID: PMC7280140 DOI: 10.1016/j.infpip.2020.100069] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
From its origins as a left-field, experimental, and even “maverick” intervention, faecal microbiota transplantation (FMT) is now a well-recognised, accepted, and potentially life-saving therapeutic strategy, for the management of recurrent Clostridiodes difficile infection (rCDI). It is being investigated as a treatment for a growing number of diseases including hepatic encephalopathy and eradication of antimicrobial resistant organisms, and the list of indications will likely expand in the future. There is no universally accepted definition of what FMT is, and its mechanism of action remains incompletely understood; this has likely contributed to the breadth of approaches to regulation depending on interpretation. In the UK FMT is considered a medicinal product, in North America, a biological product, whereas in parts of Europe, it is considered a human cell/tissue product. Regulation seeks to improve quality and safety, however, lack of standardisation creates confusion, and overly restrictive regulation may hamper widespread access and discourage research using FMT. FMT is generally considered safe, especially if rigorous donor screening and testing is conducted. Most short-term risks are associated with the delivery method (e.g. colonoscopy). Longer term risks are less well described but longitudinal follow-up of treated cohorts is in place to assess for this, and no signal towards harm has been found to date. Rarely it has been associated with adverse outcomes including the transmission of antibiotic resistant bacteria, and even death. It is vital patients undergoing FMT are well informed to the currently appreciated risks and benefits before proceeding.
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| | - Liz Allen
- Early Clinical Development Centre of Excellence, IQVIA, Reading, UK.,Department of Pharmacy, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nur Masirah M Zain
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research (CIDR), King's College, London and Guy's & St. Thomas' NHS Foundation Trust, UK
| |
Collapse
|
18
|
Lopez CA, McNeely TP, Nurmakova K, Beavers WN, Skaar EP. Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe 2020; 63:102210. [PMID: 32422411 DOI: 10.1016/j.anaerobe.2020.102210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Clostridioides difficile colonizes the intestines of susceptible individuals and releases toxins that mediate disease. To replicate and expand in the intestines, C. difficile ferments proline, and this activity is influenced by the availability of proline and trace nutrients. C. difficile must also compete with the commensal microbiota for these limited nutrients. The specific microbes present in the intestines that may shape the ability of C. difficile to benefit from proline fermentation are unknown. In this study we developed a panel of commensal Clostridia to test the hypothesis that the microbiota influences C. difficile growth through proline fermentation. The experimental panel of Clostridia was composed of murine and human isolates that ranged in their capacity to ferment proline in different media. Competition between wild type C. difficile and a mutant strain unable to ferment proline (prdB:CT) in the presence of these Clostridia revealed that bacteria closely related to Paraclostridium benzoelyticum and Paeniclostridium spp. decreased the benefit to C. difficile provided by proline fermentation. Conversely, Clostridium xylanolyticum drove C. difficile towards an increased reliance on proline fermentation for growth. Overall, the ability of C. difficile to benefit from proline fermentation is contextual and in part dependent on the microbiota.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA.
| | | | | | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Effects of Antibiotics on the Intestinal Microbiota of Mice. Antibiotics (Basel) 2020; 9:antibiotics9040191. [PMID: 32316518 PMCID: PMC7235770 DOI: 10.3390/antibiotics9040191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Studies on human and mouse gastrointestinal microbiota have correlated the composition of the microbiota to a variety of diseases, as well as proved it vital to prevent colonization with resistant bacteria, a phenomenon known as colonization resistance. Antibiotics dramatically modify the gut community and there are examples of how antibiotic usage lead to colonization with resistant bacteria [e.g., dicloxacillin usage selecting for ESBL-producing E. coli carriage], as shown by Hertz et al. Here, we investigated the impact of five antibiotics [cefotaxime, cefuroxime, dicloxacillin, clindamycin, and ciprofloxacin] on the intestinal microbiota in mice. Five different antibiotics were each given to groups of five mice. The intestinal microbiotas were profiled by use of the IS-pro analysis; a 16S–23S rDNA interspace [IS]-region-based profiling method. For the mice receiving dicloxacillin and clindamycin, we observed dramatic shifts in dominating phyla from day 1 to day 5. Of note, diversity increased, but overall bacterial load decreased. For ciprofloxacin, cefotaxime, and cefuroxime there were few overall changes. We speculate that antibiotics with efficacy against the abundant anaerobes in the gut, particularly Bacteroidetes, can in fact be selected for resistant bacteria, disregarding the spectrum of activity.
Collapse
|
20
|
Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC, Kujawska M, Martin S, Peel N, Acford-Palmer H, Hoyles L, Clarke P, Hall LJ, Clark MD. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol 2020; 5:430-442. [PMID: 31844297 PMCID: PMC7044117 DOI: 10.1038/s41564-019-0626-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022]
Abstract
The MinION sequencing platform offers near real-time analysis of DNA sequence; this makes the tool attractive for deployment in fieldwork or clinical settings. We used the MinION platform coupled to the NanoOK RT software package to perform shotgun metagenomic sequencing and profile mock communities and faecal samples from healthy and ill preterm infants. Using Nanopore data, we reliably classified a 20-species mock community and captured the diversity of the immature gut microbiota over time and in response to interventions such as probiotic supplementation, antibiotic treatment or episodes of suspected sepsis. We also performed rapid real-time runs to assess gut-associated microbial communities in critically ill and healthy infants, facilitated by NanoOK RT software package, which analysed sequences as they were generated. Our pipeline reliably identified pathogenic bacteria (that is, Klebsiella pneumoniae and Enterobacter cloacae) and their corresponding antimicrobial resistance gene profiles within as little as 1 h of sequencing. Results were confirmed using pathogen isolation, whole-genome sequencing and antibiotic susceptibility testing, as well as mock communities and clinical samples with known antimicrobial resistance genes. Our results demonstrate that MinION (including cost-effective Flongle flow cells) with NanoOK RT can process metagenomic samples to a rich dataset in < 5 h, which creates a platform for future studies aimed at developing these tools and approaches in clinical settings with a focus on providing tailored patient antimicrobial treatment options.
Collapse
Affiliation(s)
| | | | | | - Shabhonam Caim
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | | | - Samuel Martin
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Ned Peel
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Paul Clarke
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Matthew D Clark
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Natural History Museum, London, UK.
| |
Collapse
|
21
|
Kamboj M, Gennarelli RL, Brite J, Sepkowitz K, Lipitz-Snyderman A. Risk for Clostridiodes difficile Infection among Older Adults with Cancer. Emerg Infect Dis 2020; 25. [PMID: 31442017 PMCID: PMC6711221 DOI: 10.3201/eid2509.181142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To assess whether risk for Clostridiodes difficile infection (CDI) is higher among older adults with cancer, we conducted a retrospective cohort study with a nested case-control analysis using population-based Surveillance, Epidemiology, and End Results-Medicare linked data for 2011. Among 93,566 Medicare beneficiaries, incident CDI and odds for acquiring CDI were higher among patients with than without cancer. Specifically, risk was significantly higher for those who had liquid tumors and higher for those who had recently diagnosed solid tumors and distant metastasis. These findings were independent of prior healthcare-associated exposure. This population-based assessment can be used to identify targets for prevention of CDI.
Collapse
|
22
|
High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med 2020; 26:59-64. [PMID: 31907459 PMCID: PMC7005909 DOI: 10.1038/s41591-019-0709-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
The intestinal microbiota is a complex community of bacteria, archaea, viruses, protists and fungi1,2. While the composition of bacterial constituents has been linked to immune homeostasis and to infectious susceptibility3–7, the role of non-bacterial constituents and of cross-kingdom microbial interactions in these processes is poorly understood2,8. Fungi represent a major cause of infectious morbidity and mortality in immune-compromised individuals, though the relationship of intestinal fungi (i.e., the mycobiota) with fungal bloodstream infections (BSI) remains undefined9. We integrated an optimized bioinformatics pipeline with high-resolution mycobiota sequencing and comparative genomic analyses of fecal and blood specimens from recipients of allogeneic hematopoietic cell transplant (allo-HCT). Patients with Candida BSI experienced a prior marked intestinal expansion of pathogenic Candida species; this expansion consisted of a complex dynamic between multiple species and subspecies with a stochastic translocation pattern into the bloodstream. The intestinal expansion of pathogenic Candida species was associated with a significant loss in bacterial burden and diversity, particularly in the anaerobes. Thus, simultaneous analysis of intestinal fungi and bacteria identifies dysbiosis states across kingdoms that may promote fungal translocation and facilitate invasive disease. These findings support microbiota-driven approaches to identify patients at risk for fungal BSI for pre-emptive therapeutic intervention.
Collapse
|
23
|
Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 2019; 5:166-180. [PMID: 31768029 PMCID: PMC6925328 DOI: 10.1038/s41564-019-0613-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Clostridioides difficile is a leading cause of health care-associated infections. Although significant progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we performed a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observed great epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity whose corresponding gene is highly conserved across our dataset and in all ∼300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacted sporulation, a key step in C. difficile disease transmission, consistently supported by multi-omics data, genetic experiments, and a mouse colonization model. Further experimental and transcriptomic analysis also suggested that epigenetic regulation is associated with cell length, biofilm formation, and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this critical pathogen. This work also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomics studies.
Collapse
|
24
|
In vitro inhibitory activity of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 alone or in combination against bacterial and Candida reference strains and clinical isolates. Heliyon 2019; 5:e02891. [PMID: 31799467 PMCID: PMC6881622 DOI: 10.1016/j.heliyon.2019.e02891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 are two strains frequently used as probiotic components in food supplements. The decrease of potentially pathogenic gastrointestinal microorganisms is one of their claimed mechanisms. The aim of this study was to investigate their ability, alone or in combination, to inhibit in vitro the growth of Gram-negative, Gram-positive and Candida reference strains and clinical isolates, using different methods. The cell-free supernatants were obtained by centrifugation and filtration from single or mixed broth cultures and the inhibitory activity was tested using both agar-well diffusion and broth microdilution methods. In order to get some preliminary information about the chemical nature of the active metabolites released in the supernatants, the inhibitory activity was investigated after neutralization, heat and proteolytic treatments. The highest inhibitory activity was shown by the untreated supernatant obtained from broth culture of the two probiotic strains, especially against bacterial reference strains and clinical isolates. This supernatant showed inhibitory activity towards Candida species, too. A decreased inhibitory activity was observed for the supernatants obtained from single cultures and after proteolytic treatment, against bacterial reference strains. The study suggests that the combination of B. longum BB536 and L. rhamnosus HN001 could represent a possible alternative against gastrointestinal and urinary pathogens either as prophylaxis or as treatment.
Collapse
|
25
|
Heimesaat MM, Mrazek K, Bereswill S. Murine Fecal Microbiota Transplantation Alleviates Intestinal and Systemic Immune Responses in Campylobacter jejuni Infected Mice Harboring a Human Gut Microbiota. Front Immunol 2019; 10:2272. [PMID: 31616437 PMCID: PMC6768980 DOI: 10.3389/fimmu.2019.02272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Human campylobacteriosis constitutes a zoonotic food-borne disease and a progressively rising health burden of significant socioeconomic impact. We have recently shown that conventional mice are protected from Campylobacter jejuni infection, which was not the case for human microbiota associated (hma) mice indicating that the host-specific gut microbiota composition primarily determines susceptibility to or resistance against C. jejuni infection. In our present preclinical intervention study we addressed whether gut microbiota changes in stably C. jejuni infected hma mice following murine fecal microbiota transplantation (mFMT) could alleviate pathogen-induced immune responses. To accomplish this, secondary abiotic C57BL/6 mice were generated by broad-spectrum antibiotic treatment, perorally reassociated with a complex human gut microbiota and challenged with C. jejuni by gavage. Seven days later C. jejuni infected hma mice were subjected to peroral mFMT on 3 consecutive days. Within a week post-mFMT fecal pathogenic burdens had decreased by two orders of magnitude, whereas distinct changes in the gut microbiota composition with elevated numbers of lactobacilli and bifidobacteria could be assessed. In addition, mFMT resulted in less C. jejuni induced apoptotic responses in colonic epithelia, reduced numbers of macrophages and monocytes as well as of T lymphocytes in the large intestinal mucosa and lamina propria and in less distinct intestinal pro-inflammatory cytokine secretion as compared to mock challenge. Strikingly, inflammation dampening effects of mFMT were not restricted to the intestinal tract, but could also be observed systemically as indicated by elevated serum concentrations of pro-inflammatory cytokines such as TNF-α, IL-12p70, and IL-6 in C. jejuni infected hma mice of the mock, but not the mFMT cohort. In conclusion, our preclinical mFMT intervention study provides evidence that changes in the gut microbiota composition which might be achieved by pre- or probiotic formulations may effectively lower intestinal C. jejuni loads, dampen both, pathogen-induced intestinal and systemic inflammatory sequelae and may represent a useful tool to treat continuous shedding of C. jejuni by asymptomatic carriers which is critical in the context of food production, hospitalization and immunosuppression.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | | |
Collapse
|
26
|
Rohlfing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, Benito de la Puebla H, Doublié S, Shen A. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet 2019; 15:e1008224. [PMID: 31276487 PMCID: PMC6636752 DOI: 10.1371/journal.pgen.1008224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/17/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.
Collapse
Affiliation(s)
- Amy E. Rohlfing
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian E. Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Emily R. Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - M. Lauren Donnelly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hector Benito de la Puebla
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kalakuntla AS, Nalakonda G, Nalakonda K, Pidikiti CV, Aasim SA. Probiotics and Clostridium Difficile: A Review of Dysbiosis and the Rehabilitation of Gut Microbiota. Cureus 2019; 11:e5063. [PMID: 31516774 PMCID: PMC6721914 DOI: 10.7759/cureus.5063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The basis of this paper is to address the use of probiotics as a novel approach to help treat the growing problem of antibiotic-associated diarrhea (AAD), particularly, Clostridium difficile-associated diarrhea (CDAD). Most of the available data regarding probiotics and their usefulness in treating Clostridium difficile infection (CDI) was collected and analyzed. Studies showed the effectiveness of probiotics in treating and also preventing CDI, as well as other gastrointestinal conditions such as Helicobacter pylori infection and inflammatory bowel disease. Probiotics also have, based on limited research, a comparatively minimal adverse effect profile and can aid in faster recovery from disease. Extensive research has been done on two organisms, Lactobacillus and Saccharomyces, but further research into other effective organisms are needed. More clinical trials also need to be conducted to better understand the side effect profile, optimal dosage, drug interactions, and long-term effects on gut microbiota.
Collapse
Affiliation(s)
- Ashish S Kalakuntla
- Gastroenterology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| | - Gouthami Nalakonda
- Gastroenterology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| | - Kashyap Nalakonda
- Gastroenterology, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| | | | - Syed Ali Aasim
- Anaesthesiology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
28
|
Abstract
IMPACT STATEMENT This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.
Collapse
Affiliation(s)
- Adam D Baim
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol 2019; 27:323-338. [PMID: 30683453 DOI: 10.1016/j.tim.2018.12.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
As more antibiotics are rendered ineffective by drug-resistant bacteria, focus must be shifted towards alternative therapies for treating infections. Although several alternatives already exist in nature, the challenge is to implement them in clinical use. Advancements within biotechnology, genetic engineering, and synthetic chemistry have opened up new avenues towards the search for therapies that can substitute for antibiotics. This review provides an introduction to the various promising approaches that have been adopted in this regard. Whilst the use of bacteriophages and antibodies has been partly implemented, other promising strategies, such as probiotics, lysins, and antimicrobial peptides, are in various stages of development. Propitious concepts such as genetically modified phages, antibacterial oligonucleotides, and CRISPR-Cas9 are also discussed.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.
| |
Collapse
|
30
|
Androga GO, Knight DR, Lim SC, Foster NF, Riley TV. Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe 2018; 54:55-60. [DOI: 10.1016/j.anaerobe.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
|
31
|
Fonkou MDM, Dufour JC, Dubourg G, Raoult D. Repertoire of bacterial species cultured from the human oral cavity and respiratory tract. Future Microbiol 2018; 13:1611-1624. [DOI: 10.2217/fmb-2018-0181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While the gut microbiota is currently in the spotlight, the airway microbiome has been recently associated with several pulmonary diseases and carcinogenesis. As there are several biases associated with high-throughput sequencing methods, cultivation techniques are crucial for the investigation of the human microbiome. We thus aimed to build an exhaustive database, including a list of microbes isolated by culture from respiratory specimens, by performing a review of the literature. Herein, we have listed a total of 756 species cultured from the human respiratory tract. This represents 27.23% of the overall bacterial richness captured from human being by culture methods. This repertoire could be valuable for the elucidation of the interactions between the respiratory microbiome and human health.
Collapse
Affiliation(s)
- Maxime DM Fonkou
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Jean-Charles Dufour
- Aix Marseille Univ., INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France
- APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Grégory Dubourg
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
32
|
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Modulation of the gut microbiota to improve innate resistance. Curr Opin Immunol 2018; 54:137-144. [PMID: 30205357 DOI: 10.1016/j.coi.2018.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
One major benefit from the association of hosts with the complex microbial communities that establish at body surfaces is the resistance to pathogen infection. This protective role of symbiotic microbes is becoming ever more relevant, given the alarming rise of multidrug-resistant pathogens and severe infections in patients following extensive antibiotic treatment. Herein, we highlight some recent mechanistic studies that have provided insights into how the highly dynamic dialogue amongst intestinal bacteria and between intestinal bacteria and their host can contribute to protect the host against pathogens in and outside the gut. We then discuss how delineating the rules of this dialogue can help design strategies to modulate the microbiota and improve host resistance to infections.
Collapse
Affiliation(s)
- Pamela Schnupf
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Valérie Gaboriau-Routhiau
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France; INRA Micalis Institut, UMR1319, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nadine Cerf-Bensussan
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
33
|
Fecal Microbiome Among Nursing Home Residents with Advanced Dementia and Clostridium difficile. Dig Dis Sci 2018; 63:1525-1531. [PMID: 29594967 PMCID: PMC6434537 DOI: 10.1007/s10620-018-5030-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/15/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND/OBJECTIVES Patients colonized with toxinogenic strains of Clostridium difficile have an increased risk of subsequent infection. Given the potential role of the gut microbiome in increasing the risk of C. difficile colonization, we assessed the diversity and composition of the gut microbiota among long-term care facility (LTCF) residents with advanced dementia colonized with C. difficile. DESIGN Retrospective analysis of rectal samples collected during a prospective observational study. SETTING Thirty-five nursing homes in Boston, Massachusetts. PARTICIPANTS Eighty-seven LTCF residents with advanced dementia. MEASUREMENTS Operational taxonomic units were identified using 16S rRNA sequencing. Samples positive for C. difficile were matched to negative controls in a 1:3 ratio and assessed for differences in alpha diversity, beta diversity, and differentially abundant features. RESULTS Clostridium difficile sequence variants were identified among 7/87 (8.04%) residents. No patient had evidence of C. difficile infection. Demographic characteristics and antimicrobial exposure were similar between the seven cases and 21 controls. The overall biodiversity among cases and controls was reduced with a median Shannon index of 3.2 (interquartile range 2.7-3.9), with no statistically significant differences between groups. The bacterial community structure was significantly different among residents with C. difficile colonization versus those without and included a predominance of Akkermansia spp., Dermabacter spp., Romboutsia spp., Meiothermus spp., Peptoclostridium spp., and Ruminococcaceae UGC 009. CONCLUSION LTCF residents with advanced dementia have substantial dysbiosis of their gut microbiome. Specific taxa characterized C. difficile colonization status.
Collapse
|
34
|
Designer microbiomes for environmental, energy and health biotechnology. Curr Opin Microbiol 2018; 43:117-123. [DOI: 10.1016/j.mib.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
|
35
|
Crouzet L, Derrien M, Cherbuy C, Plancade S, Foulon M, Chalin B, van Hylckama Vlieg JET, Grompone G, Rigottier-Gois L, Serror P. Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Sci Rep 2018; 8:5098. [PMID: 29572473 PMCID: PMC5865147 DOI: 10.1038/s41598-018-23437-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022] Open
Abstract
Enterococci, in particular vancomycin-resistant enterococci (VRE), are a leading cause of hospital-acquired infections. Promoting intestinal resistance against enterococci could reduce the risk of VRE infections. We investigated the effects of two Lactobacillus strains to prevent intestinal VRE. We used an intestinal colonisation mouse model based on an antibiotic-induced microbiota dysbiosis to mimic enterococci overgrowth and VRE persistence. Each Lactobacillus spp. was administered daily to mice starting one week before antibiotic treatment until two weeks after antibiotic and VRE inoculation. Of the two strains, Lactobacillus paracasei CNCM I-3689 decreased significantly VRE numbers in the feces demonstrating an improvement of the reduction of VRE. Longitudinal microbiota analysis showed that supplementation with L. paracasei CNCM I-3689 was associated with a better recovery of members of the phylum Bacteroidetes. Bile salt analysis and expression analysis of selected host genes revealed increased level of lithocholate and of ileal expression of camp (human LL-37) upon L. paracasei CNCM I-3689 supplementation. Although a direct effect of L. paracasei CNCM I-3689 on the VRE reduction was not ruled out, our data provide clues to possible anti-VRE mechanisms supporting an indirect anti-VRE effect through the gut microbiota. This work sustains non-antibiotic strategies against opportunistic enterococci after antibiotic-induced dysbiosis.
Collapse
Affiliation(s)
- Laureen Crouzet
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Medis, INRA Clermont-Ferrand-Theix, 63122, Saint-Genès-Champanelle, France
| | | | - Claire Cherbuy
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sandra Plancade
- Maiage, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mélanie Foulon
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Benjamin Chalin
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Gianfranco Grompone
- Danone Nutricia Research, F-91120, Palaiseau, France.,Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | | | - Pascale Serror
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|