1
|
Song C, Dong Q, Yao Y, Cui Y, Zhang C, Lin L, Zhu L, Hu Y, Liu H, Jin Y, Li P, Liu X, Cao C. Nonreceptor tyrosine kinase ABL1 regulates lysosomal acidification by phosphorylating the ATP6V1B2 subunit of the vacuolar-type H +-ATPase. Autophagy 2025; 21:1192-1211. [PMID: 39757940 PMCID: PMC12087662 DOI: 10.1080/15548627.2024.2448913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. Its activity and assembly are tightly controlled by multiple pathways, of which phosphorylation-mediated regulation is poorly understood. In this report, we show that in response to starvation stimuli, the nonreceptor tyrosine kinase ABL1 directly interacts with ATP6V1B2, a subunit of the V1 domain of the V-ATPase, and phosphorylates ATP6V1B2 at Y68. Y68 phosphorylation in ATP6V1B2 facilitates the recruitment of the ATP6V1D subunit into the V1 subcomplex of V-ATPase, therefore potentiating the assembly of the V1 subcomplex with the membrane-embedded V0 subcomplex to form the integrated functional V-ATPase. ABL1 inhibition or depletion impairs V-ATPase assembly and lysosomal acidification, resulting in an increased lysosomal pH, a decreased lysosomal hydrolase activity, and consequently, the suppressed degradation of lumenal cargo during macroautophagy/autophagy. Consistently, the efficient removal of damaged mitochondrial residues during mitophagy is also impeded by ABL1 deficiency. Our findings suggest that ABL1 is a crucial autophagy regulator that maintains the adequate lysosomal acidification required for both physiological conditions and stress responses.Abbreviation: ANOVA: analysis of variance; Baf A1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CRK: CRK proto-oncogene, adaptor protein; CTSD: cathepsin D; DMSO: dimethylsulfoxide; EBSS: Earle's balanced salt solution; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GST: glutathione S-transferase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PD: Parkinson disease; PLA: proximity ligation assay; RFP: red fluorescent protein; WT: wild-type.
Collapse
Affiliation(s)
- Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
3
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
4
|
Mou C, Zhou L, Xiong JJ, Lei L. A unique case of neurodevelopmental disorders and epilepsy linked to WDR45 variant inheritance and maternal mosaicism. Gene 2025; 936:149032. [PMID: 39500384 DOI: 10.1016/j.gene.2024.149032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/02/2024]
Abstract
This paper reports a case of a WDR45 variant inherited from an asymptomatic low-percentage mosaic mother. The proband boy was found to have significant psychomotor developmental delay, epilepsy, and abnormal liver function at four months of age, and a hemizygous variant WDR45 c.867_869dupGTA (p.Y290*) was detected by high throughput sequencing, which has an ACMG rating of likely pathogenic variant. The same variant was detected by high-throughput sequencing of the amniotic fluid of the fetus at his mother's next pregnancy. Eventually, the same variant was detected in mosaic status in the unaffected mother by target capture-based deep sequencing of the asymptomatic mother, with a mutation load of 4.06 %.
Collapse
Affiliation(s)
- Can Mou
- Department of Prenatal Diagnosis Center, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Lan Zhou
- Department of Prenatal Diagnosis Center, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Jiao Jiao Xiong
- Department of Prenatal Diagnosis Center, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Ling Lei
- Department of Prenatal Diagnosis Center, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| |
Collapse
|
5
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2025; 30:810-824. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Shao DD, Zhao Y, Ghosh U, Brew J, Zhao S, Qian X, Tran J, Taketomi T, Tsuruta F, Park PJ, Walsh CA. Perinatal Reduction of Genetically Aberrant Neurons from Human Cerebral Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617159. [PMID: 39416114 PMCID: PMC11482944 DOI: 10.1101/2024.10.08.617159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Since human neurons are postmitotic and long-lived, the regulation of their genomic content is crucial. Normal neuronal function is uniquely dependent on gene dosage, with diverse genome copy number alterations (CNA) associated with neurodevelopmental and neuropsychiatric conditions 1-3 . In this study, we evaluated the landscape of CNA arising in normal human brains, focusing on prenatal and perinatal ages. We surveyed ∼5,897 CNA in >1,200 single neurons from human postmortem brain of individuals without a neurological diagnosis, ranging in age from gestational week (GW) 14 to 90 years old. Using Tn5-based single-cell whole-genome amplification (scWGA) and informatic advances to validate CNAs in single neurons, we determined that a striking proportion of neurons (up to 45%) in human prenatal cortex showed aberrant genomes, characterized by large-scale CNAs in multiple chromosomes, which reduces significantly during the perinatal period (p<0.1). Furthermore, we identified micronuclei in the developing cortex, reflecting genetic instability reminiscent of that described in early embryonic development 4-6 . The scale of CNA appeared to alter the trajectory of neuronal elimination, as subchromosomal CNAs were more slowly eliminated, over the course of a lifetime. CNAs were depleted for dosage-sensitive genes and genes involved in neurodevelopmental disorders (p<.05), and thus represent genomic quality control mechanisms that eliminate selectively those neurons with CNA involving critical genes. Perinatal elimination of defective neuronal genomes may in turn reflect a developmental landmark essential for normal cognitive function.
Collapse
|
7
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. eLife 2024; 12:RP91002. [PMID: 39255192 PMCID: PMC11386957 DOI: 10.7554/elife.91002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - YuNing Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
8
|
Teng H, Chen S, Liu F, Teng Y, Li Y, Liang D, Wu L, Li Z. O-Sialoglycoprotein Endopeptidase Deficiency Impairs Proteostasis and Induces Autophagy in Human Embryonic Stem Cells. Int J Mol Sci 2024; 25:7889. [PMID: 39063131 PMCID: PMC11277037 DOI: 10.3390/ijms25147889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| |
Collapse
|
9
|
Frostadottir D, Welinder C, Perez R, Dahlin LB. Quantitative mass spectrometry analysis of the injured proximal and distal human digital nerve ends. Front Mol Neurosci 2024; 17:1425780. [PMID: 39015129 PMCID: PMC11250671 DOI: 10.3389/fnmol.2024.1425780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Proteomic analysis of injured human peripheral nerves, particularly focusing on events occurring in the proximal and distal nerve ends, remains relatively underexplored. This study aimed to investigate the molecular patterns underlying a digital nerve injury, focusing on differences in protein expression between the proximal and distal nerve ends. Methods A total of 26 human injured digital nerve samples (24 men; 2 women; median age 47 [30-66] years), harvested during primary nerve repair within 48 h post-injury from proximal and distal nerve ends, were analyzed using mass spectrometry. Results A total of 3,914 proteins were identified, with 127 proteins showing significant differences in abundance between the proximal and the distal nerve ends. The downregulation of proteins in the distal nerve end was associated with synaptic transmission, autophagy, neurotransmitter regulation, cell adhesion and migration. Conversely, proteins upregulated in the distal nerve end were implicated in cellular stress response, neuromuscular junction stability and muscle contraction, neuronal excitability and neurotransmitter release, synaptic vesicle recycling and axon guidance and angiogenesis. Discussion Investigation of proteins, with functional annotations analysis, in proximal and the distal ends of human injured digital nerves, revealed dynamic cellular responses aimed at promoting tissue degeneration and restoration, while suppressing non-essential processes.
Collapse
Affiliation(s)
- Drifa Frostadottir
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences, Mass Spectrometry, Lund University, Lund, Sweden
| | - Raquel Perez
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Unit for Social Epidemiology, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Armeli F, Mengoni B, Laskin DL, Businaro R. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation. Curr Issues Mol Biol 2024; 46:6868-6884. [PMID: 39057052 PMCID: PMC11276139 DOI: 10.3390/cimb46070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
11
|
Zhu J, Huang M, Jiang P, Wang J, Zhu R, Liu C. Myclobutanil induces neurotoxicity by activating autophagy and apoptosis in zebrafish larvae (Danio rerio). CHEMOSPHERE 2024; 357:142027. [PMID: 38621487 DOI: 10.1016/j.chemosphere.2024.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Myclobutanil (MYC), a typical broad-spectrum triazole fungicide, is often detected in surface water. This study aimed to explore the neurotoxicity of MYC and the underlying mechanisms in zebrafish and in PC12 cells. In this study, zebrafish embryos were exposed to 0, 0.5 and 1 mg/L of MYC from 4 to 96 h post fertilization (hpf) and neurobehavior was evaluated. Our data showed that MYC decreased the survival rate, hatching rate and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal neurobehaviors characterized by decreased swimming distance and movement time. MYC impaired cerebral histopathological morphology and inhibited neurogenesis in HuC:egfp transgenic zebrafish. MYC also reduced the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and downregulated neurodevelopment related genes (gfap, syn2a, gap43 and mbp) in zebrafish and PC12 cells. Besides, MYC activated autophagy through enhanced expression of the LC3-II protein and suppressed expression of the p62 protein and autophagosome formation, subsequently triggering apoptosis by upregulating apoptotic genes (p53, bax, bcl-2 and caspase 3) and the cleaved caspase-3 protein in zebrafish and PC12 cells. These processes were restored by the autophagy inhibitor 3-methyladenine (3-MA) both in vivo and in vitro, indicating that MYC induces neurotoxicity by activating autophagy and apoptosis. Overall, this study revealed the potential autophagy and apoptosis mechanisms of MYC-induced neurotoxicity and provided novel strategies to counteract its toxicity.
Collapse
Affiliation(s)
- Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingtao Huang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Peiyun Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, China.
| | - Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, China.
| |
Collapse
|
12
|
Xu H, Zhang LB, Luo YY, Wang L, Zhang YP, Chen PQ, Ba XY, Han J, Luo H. Synaptotagmins family affect glucose transport in retinal pigment epithelial cells through their ubiquitination-mediated degradation and glucose transporter-1 regulation. World J Diabetes 2024; 15:958-976. [PMID: 38766439 PMCID: PMC11099358 DOI: 10.4239/wjd.v15.i5.958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Synaptotagmins (SYTs) are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones. However, few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy (DR) through Ca2+/glucose transporter-1 (GLUT1) and the possible regulatory mechanism of SYTs. AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR. METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells (ARPE-19). Bioinformatics analysis, reverse transcriptase-polymerase chain reaction, Western blot, flow cytometry, ELISA, HE staining, and TUNEL staining were used for analysis. RESULTS Six differentially expressed proteins (SYT2, SYT3, SYT4, SYT7, SYT11, and SYT13) were found between the DR and control groups, and SYT4 was highly expressed. Hyperglycemia induces SYT4 overexpression, manipulates Ca2+ influx to induce GLUT1 fusion with the plasma membrane, promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake, induces ARPE-19 cell apoptosis, and promotes DR progression. Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR, resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane, and these effects were blocked by oe-Parkin treatment. Moreover, dysregulation of the myelin transcription factor 1 (Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process, and this process was inhibited in the oe-MYT1-treated group. CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.
Collapse
Affiliation(s)
- Hong Xu
- Department of Ophthalmology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Li-Bo Zhang
- Department of Ophthalmology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Yi-Yi Luo
- Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Ling Wang
- Department of Endocrinology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Ye-Pin Zhang
- Department of Pathology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Pei-Qi Chen
- Department of Endocrinology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Xue-Ying Ba
- Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Jian Han
- Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| | - Heng Luo
- Department of Ophthalmology, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
- Precision Medicine Center of Chuxiong Yi Autonomous Prefecture, The People’s Hospital of Chuxiong Yi Autonomous Prefecture & The Fourth Affiliated Hospital of Dali University, Chuxiong Yi Autonomous Prefecture 675000, Yunnan Province, China
| |
Collapse
|
13
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.556394. [PMID: 37745492 PMCID: PMC10515868 DOI: 10.1101/2023.09.12.556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues from ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
|
14
|
Zhou X, Lee YK, Li X, Kim H, Sanchez-Priego C, Han X, Tan H, Zhou S, Fu Y, Purtell K, Wang Q, Holstein GR, Tang B, Peng J, Yang N, Yue Z. Integrated proteomics reveals autophagy landscape and an autophagy receptor controlling PKA-RI complex homeostasis in neurons. Nat Commun 2024; 15:3113. [PMID: 38600097 PMCID: PMC11006854 DOI: 10.1038/s41467-024-47440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - You-Kyung Lee
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xianting Li
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Kim
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kerry Purtell
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Qian Wang
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gay R Holstein
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Nan Yang
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Institute for Regenerative Medicine, Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center of Parkinson's Disease Neurobiology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
16
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
17
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Tsong H, Holzbaur ELF, Stavoe AKH. Aging Differentially Affects Axonal Autophagosome Formation and Maturation. Autophagy 2023; 19:3079-3095. [PMID: 37464898 PMCID: PMC10621248 DOI: 10.1080/15548627.2023.2236485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Misregulation of neuronal macroautophagy/autophagy has been implicated in age-related neurodegenerative diseases. We compared autophagosome formation and maturation in primary murine neurons during development and through aging to elucidate how aging affects neuronal autophagy. We observed an age-related decrease in the rate of autophagosome formation leading to a significant decrease in the density of autophagosomes along the axon. Next, we identified a surprising increase in the maturation of autophagic vesicles in neurons from aged mice. While we did not detect notable changes in endolysosomal content in the distal axon during early aging, we did observe a significant loss of acidified vesicles in the distal axon during late aging. Interestingly, we found that autophagic vesicles were transported more efficiently in neurons from adult mice than in neurons from young mice. This efficient transport of autophagic vesicles in both the distal and proximal axon is maintained in neurons during early aging, but is lost during late aging. Our data indicate that early aging does not negatively impact autophagic vesicle transport nor the later stages of autophagy. However, alterations in autophagic vesicle transport efficiency during late aging reveal that aging differentially impacts distinct aspects of neuronal autophagy.Abbreviations: ACAP3: ArfGAP with coiled-coil, ankyrin repeat and PH domains 3; ARF6: ADP-ribosylation factor 6; ATG: autophagy related; AVs: autophagic vesicles; DCTN1/p150Glued: dynactin 1; DRG: dorsal root ganglia; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; LAMP2: lysosomal-associated protein 2; LysoT: LysoTracker; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK8IP1/JIP1: mitogen-activated protein kinase 8 interacting protein 1; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; mCh: mCherry; PE: phosphatidylethanolamine.
Collapse
Affiliation(s)
- Heather Tsong
- Department of Neurobiology & Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erika LF Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea KH Stavoe
- Department of Neurobiology & Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Fu D, Liang X, Jiang Y, Liu J, Lin X, Yang Q, Chen X, Huang P, Wang W, Wu W. Iron blocks autophagic flux and induces autophagosomes accumulation in microglia. Food Chem Toxicol 2023; 181:114054. [PMID: 37777083 DOI: 10.1016/j.fct.2023.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Iron is an essential dietary micronutrient for maintaining physiological homeostasis. However, disruption of cerebral iron regulation with the accumulation of iron in different brain structures appears to have a role in the pathogenesis of various neurodegenerative disorders. Studies have reported that autophagy induction could potentially mitigate progression in neurodegenerative diseases with iron deposition, but the relationship between autophagy and iron remains poorly understood. Meanwhile, abnormal autophagy in microglia is closely related to the occurrence of neurodegenerative diseases. Therefore, the effect of iron on microglia autophagy needs to be elaborated. In the present study, we found that iron induces autophagosome accumulation but inhibits its initiation in an Akt-mTOR pathway independent manner. Meanwhile, it caused autophagy flux defects and dysfunction of lysosomes. We also found that iron overload reduced the expression of Rab7, which is an essential protein for the fusion of autophagosomes and lysosomes. These results suggest that iron induces the accumulation of autophagosome in microglia and disrupts the autophagic flux in late stage of autophagy. Therefore, our work provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Deqiang Fu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xingyue Liang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China; School of Advance Manufacture, Fuzhou University, Jinjiang, 362251, China
| | - Yuxuan Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaosi Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Quan Yang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xue Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ping Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China; School of Advance Manufacture, Fuzhou University, Jinjiang, 362251, China.
| |
Collapse
|
20
|
Zhang SQ, Deng Q, Zhu Q, Hu ZL, Long LH, Wu PF, He JG, Chen HS, Yue Z, Lu JH, Wang F, Chen JG. Cell type-specific NRBF2 orchestrates autophagic flux and adult hippocampal neurogenesis in chronic stress-induced depression. Cell Discov 2023; 9:90. [PMID: 37644025 PMCID: PMC10465581 DOI: 10.1038/s41421-023-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China.
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Zhang T, Bhambri A, Zhang Y, Barbosa D, Bae HG, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control oligodendrocyte number. Cell Rep 2023; 42:112943. [PMID: 37543947 PMCID: PMC10529879 DOI: 10.1016/j.celrep.2023.112943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.
Collapse
Affiliation(s)
- Tingxin Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Gyu Bae
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabeen Wazir
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Choi I, Wang M, Yoo S, Xu P, Seegobin SP, Li X, Han X, Wang Q, Peng J, Zhang B, Yue Z. Autophagy enables microglia to engage amyloid plaques and prevents microglial senescence. Nat Cell Biol 2023; 25:963-974. [PMID: 37231161 PMCID: PMC10950302 DOI: 10.1038/s41556-023-01158-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Dysfunctional autophagy has been implicated in the pathogenesis of Alzheimer's disease (AD). Previous evidence suggested disruptions of multiple stages of the autophagy-lysosomal pathway in affected neurons. However, whether and how deregulated autophagy in microglia, a cell type with an important link to AD, contributes to AD progression remains elusive. Here we report that autophagy is activated in microglia, particularly of disease-associated microglia surrounding amyloid plaques in AD mouse models. Inhibition of microglial autophagy causes disengagement of microglia from amyloid plaques, suppression of disease-associated microglia, and aggravation of neuropathology in AD mice. Mechanistically, autophagy deficiency promotes senescence-associated microglia as evidenced by reduced proliferation, increased Cdkn1a/p21Cip1, dystrophic morphologies and senescence-associated secretory phenotype. Pharmacological treatment removes autophagy-deficient senescent microglia and alleviates neuropathology in AD mice. Our study demonstrates the protective role of microglial autophagy in regulating the homeostasis of amyloid plaques and preventing senescence; removal of senescent microglia is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Insup Choi
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven P Seegobin
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xian Han
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Sharma A, Narasimha K, Manjithaya R, Sheeba V. Restoration of Sleep and Circadian Behavior by Autophagy Modulation in Huntington's Disease. J Neurosci 2023; 43:4907-4925. [PMID: 37268416 PMCID: PMC10312063 DOI: 10.1523/jneurosci.1894-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 06/04/2023] Open
Abstract
Circadian and sleep defects are well documented in Huntington's disease (HD). Modulation of the autophagy pathway has been shown to mitigate toxic effects of mutant Huntingtin (HTT) protein. However, it is not clear whether autophagy induction can also rescue circadian and sleep defects. Using a genetic approach, we expressed human mutant HTT protein in a subset of Drosophila circadian neurons and sleep center neurons. In this context, we examined the contribution of autophagy in mitigating toxicity caused by mutant HTT protein. We found that targeted overexpression of an autophagy gene, Atg8a in male flies, induces autophagy pathway and partially rescues several HTT-induced behavioral defects, including sleep fragmentation, a key hallmark of many neurodegenerative disorders. Using cellular markers and genetic approaches, we demonstrate that indeed the autophagy pathway is involved in behavioral rescue. Surprisingly, despite behavioral rescue and evidence for the involvement of the autophagy pathway, the large visible aggregates of mutant HTT protein were not eliminated. We show that the rescue in behavior is associated with increased mutant protein aggregation and possibly enhanced output from the targeted neurons, resulting in the strengthening of downstream circuits. Overall, our study suggests that, in the presence of mutant HTT protein, Atg8a induces autophagy and improves the functioning of circadian and sleep circuits.SIGNIFICANCE STATEMENT Defects in sleep and circadian rhythms are well documented in Huntington's disease. Recent literature suggests that circadian and sleep disturbances can exacerbate neurodegenerative phenotypes. Hence, identifying potential modifiers that can improve the functioning of these circuits could greatly improve disease management. We used a genetic approach to enhance cellular proteostasis and found that overexpression of a crucial autophagy gene, Atg8a, induces the autophagy pathway in the Drosophila circadian and sleep neurons and rescues sleep and activity rhythm. We demonstrate that the Atg8a improves synaptic function of these circuits by possibly enhancing the aggregation of the mutant protein in neurons. Further, our results suggest that differences in basal levels of protein homeostatic pathways is a factor that determines selective susceptibility of neurons.
Collapse
Affiliation(s)
- Ankit Sharma
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavyashree Narasimha
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
24
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
25
|
Su W, Xie Z, Bai X, Li Z, Liu X. The Absence of Gasdermin D Reduces Nuclear Autophagy in a Cecal Ligation and Puncture-Induced Sepsis-Associated Encephalopathy Mouse Model. Brain Sci 2023; 13:brainsci13030478. [PMID: 36979288 PMCID: PMC10046561 DOI: 10.3390/brainsci13030478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which is a life-threatening condition resulting from a dysregulated host response to infection. Pyroptosis, a pro-inflammatory mode of lytic cell death mediated by GSDMD (Gasdermin D), is involved in the pathogenesis of SAE. While autophagy has been extensively studied in SAE, the role of nuclear autophagy is not yet well understood. In this study, we aimed to investigate the involvement of pyroptosis and neural nuclear autophagy in the pathogenesis of SAE. We analyzed a CLP (cecal ligation and puncture)-induced SAE model in wild-type and GSDMD−/− mice to gain insights into the underlying mechanisms. Here, we show that in sepsis, neural nuclear autophagy is extremely activated, and nuclear LaminB decreases and is accompanied by an increase in the ratio of LC3BII/I. These effects can be reversed in GSDMD−/− mice. The behavioral outcomes of septic wild-type mice are impaired by the evidence from the novel object recognition test (NORT) and open field test (OFT), but are improved in septic GSDMD−/− mice. In conclusion, our study demonstrates the activation of neural nuclear autophagy in SAE. The absence of GSDMD inhibits nuclear autophagy and improves the behavioral outcomes of SAE.
Collapse
Affiliation(s)
- Wei Su
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenxing Xie
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| | - Xinghua Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| |
Collapse
|
26
|
Alam S, Afsar SY, Van Echten-Deckert G. S1P Released by SGPL1-Deficient Astrocytes Enhances Astrocytic ATP Production via S1PR 2,4, Thus Keeping Autophagy in Check: Potential Consequences for Brain Health. Int J Mol Sci 2023; 24:ijms24054581. [PMID: 36902011 PMCID: PMC10003137 DOI: 10.3390/ijms24054581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Astrocytes are critical players in brain health and disease. Sphingosine-1-phosphate (S1P), a bioactive signaling lipid, is involved in several vital processes, including cellular proliferation, survival, and migration. It was shown to be crucial for brain development. Its absence is embryonically lethal, affecting, inter alia, the anterior neural tube closure. However, an excess of S1P due to mutations in S1P-lyase (SGPL1), the enzyme responsible for its constitutive removal, is also harmful. Of note, the gene SGPL1 maps to a region prone to mutations in several human cancers and also in S1P-lyase insufficiency syndrome (SPLIS) characterized by several symptoms, including peripheral and central neurological defects. Here, we investigated the impact of S1P on astrocytes in a mouse model with the neural-targeted ablation of SGPL1. We found that SGPL1 deficiency, and hence the accumulation of its substrate, S1P, causes the elevated expression of glycolytic enzymes and preferentially directs pyruvate into the tricarboxylic acid (TCA) cycle through its receptors (S1PR2,4). In addition, the activity of TCA regulatory enzymes was increased, and consequently, so was the cellular ATP content. The high energy load activates the mammalian target of rapamycin (mTOR), thus keeping astrocytic autophagy in check. Possible consequences for the viability of neurons are discussed.
Collapse
|
27
|
Yuan R, Hahn Y, Stempel MH, Sidibe DK, Laxton O, Chen J, Kulkarni A, Maday S. Proteasomal inhibition preferentially stimulates lysosome activity relative to autophagic flux in primary astrocytes. Autophagy 2023; 19:570-596. [PMID: 35722992 PMCID: PMC9851260 DOI: 10.1080/15548627.2022.2084884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023] Open
Abstract
Neurons and astrocytes face unique demands on their proteome to enable proper function and survival of the nervous system. Consequently, both cell types are critically dependent on robust quality control pathways such as macroautophagy (hereafter referred to as autophagy) and the ubiquitin-proteasome system (UPS). We previously reported that autophagy is differentially regulated in astrocytes and neurons in the context of metabolic stress, but less is understood in the context of proteotoxic stress induced by inhibition of the UPS. Dysfunction of the proteasome or autophagy has been linked to the progression of various neurodegenerative diseases. Therefore, in this study, we explored the connection between autophagy and the proteasome in primary astrocytes and neurons. Prior studies largely in non-neural models report a compensatory relationship whereby inhibition of the UPS stimulates autophagy. To our surprise, inhibition of the proteasome did not robustly upregulate autophagy in astrocytes or neurons. In fact, the effects on autophagy are modest particularly in comparison to paradigms of metabolic stress. Rather, we find that UPS inhibition in astrocytes induces formation of Ub-positive aggregates that harbor the selective autophagy receptor, SQSTM1/p62, but these structures were not productive substrates for autophagy. By contrast, we observed a significant increase in lysosomal degradation in astrocytes in response to UPS inhibition, but this stimulation was not sufficient to reduce total SQSTM1 levels. Last, UPS inhibition was more toxic in neurons compared to astrocytes, suggesting a cell type-specific vulnerability to proteotoxic stress.Abbreviations: Baf A1: bafilomycin A1; CQ: chloroquine; Epox: epoxomicin; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; p-ULK1: phospho-ULK1; SQSTM1/p62: sequestosome 1; Ub: ubiquitin; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ruiyi Yuan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Younghee Hahn
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Max H. Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David K. Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Laxton
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Chen
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
29
|
ARMS-NF-κB signaling regulates intracellular ROS to induce autophagy-associated cell death upon oxidative stress. iScience 2023; 26:106005. [PMID: 36798436 PMCID: PMC9926119 DOI: 10.1016/j.isci.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Ankyrin repeat-rich membrane spanning (ARMS) plays roles in neural development, neuropathies, and tumor formation. Such pleiotropic function of ARMS is often attributed to diverse ARMS-interacting molecules in different cell context. However, it might be achieved by ARMS' effect on global biological mediator like reactive oxygen species (ROS). We established ARMS-knockdown in melanoma cells (siARMS) and in Drosophila eyes (GMR>dARMS RNAi ) and challenged them with H2O2. Decreased ARMS in both systems compromises nuclear translocation of NF-κB and induces ROS, which in turn augments autophagy flux and confers susceptibility to H2O2-triggered autophagic cell death. Resuming NF-κB activity or reducing ROS by antioxidants in siARMS cells and GMR>dARMS RNAi fly decreases intracellular peroxides level concurrent with reduced autophagy and attenuated cell death. Conversely, blocking NF-κB activity in wild-type flies/melanoma enhances ROS and induces autophagy with cell death. We thus uncover intracellular ROS modulated by ARMS-NFκB signaling primes autophagy for autophagic cell death upon oxidative stress.
Collapse
|
30
|
Wang Z, Wang Q, Li S, Li XJ, Yang W, He D. Microglial autophagy in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci 2023; 14:1065183. [PMID: 36704504 PMCID: PMC9872664 DOI: 10.3389/fnagi.2022.1065183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genetic mutations that are inherited. Both sporadic and familial cases display complex neuropathology and represent the most perplexing neurological disorders. Because of the undefined pathogenesis and complex clinical manifestations, there is still no effective treatment for both AD and PD. Understanding the pathogenesis of these important neurodegenerative diseases is important for developing successful therapies. Increasing evidence suggests that microglial autophagy is associated with the pathogenesis of AD and PD, and its dysfunction has been implicated in disease progression. In this review, we focus on the autophagy function in microglia and its dysfunction in AD and PD disease models in an attempt to help our understanding of the pathogenesis and identifying new therapeutic targets of AD and PD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dajian He
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Zhang T, Bae HG, Bhambri A, Zhang Y, Barbosa D, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control myelination specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522394. [PMID: 36712125 PMCID: PMC9881874 DOI: 10.1101/2022.12.31.522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.
Collapse
|
32
|
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K, Steffen A, Stradal TEB. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Sci Rep 2022; 12:17805. [PMID: 36284196 PMCID: PMC9596692 DOI: 10.1038/s41598-022-20563-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential. Despite many previous studies, molecular mechanisms mediating SMER28 activities and its direct targets have remained elusive. Here we analyzed the effects of SMER28 on cells and found that aside from autophagy induction, it significantly stabilizes microtubules and decelerates microtubule dynamics. Moreover, we report that SMER28 displays neurotrophic and neuroprotective effects at the cellular level by inducing neurite outgrowth and protecting from excitotoxin-induced axon degeneration. Finally, we compare the effects of SMER28 with other autophagy-inducing or microtubule-stabilizing drugs: whereas SMER28 and rapamycin both induce autophagy, the latter does not stabilize microtubules, and whereas both SMER28 and epothilone B stabilize microtubules, epothilone B does not stimulate autophagy. Thus, the effect of SMER28 on cells in general and neurons in particular is based on its unique spectrum of bioactivities distinct from other known microtubule-stabilizing or autophagy-inducing drugs.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kyra Grunau
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Lars Melcher
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- grid.7490.a0000 0001 2238 295XCellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E. B. Stradal
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
33
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
34
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
35
|
Gonzalez De La Cruz E, Vo Q, Moon K, McFarland KN, Weinrich M, Williams T, Giasson BI, Chakrabarty P. MhcII Regulates Transmission of α-Synuclein-Seeded Pathology in Mice. Int J Mol Sci 2022; 23:8175. [PMID: 35897751 PMCID: PMC9332117 DOI: 10.3390/ijms23158175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
MHCII molecules, expressed by professional antigen-presenting cells (APCs) such as T cells and B cells, are hypothesized to play a key role in the response of cellular immunity to α-synuclein (α-syn). However, the role of cellular immunity in the neuroanatomic transmission of α-syn pre-formed fibrillar (PFF) seeds is undetermined. To illuminate whether cellular immunity influences the transmission of α-syn seeds from the periphery into the CNS, we injected preformed α-syn PFFs in the hindlimb of the Line M83 transgenic mouse model of synucleinopathy lacking MhcII. We showed that a complete deficiency in MhcII accelerated the appearance of seeded α-syn pathology and shortened the lifespan of the PFF-seeded M83 mice. To characterize whether B-cell and T-cell inherent MhcII function underlies this accelerated response to PFF seeding, we next injected α-syn PFFs in Rag1-/- mice which completely lacked these mature lymphocytes. There was no alteration in the lifespan or burden of endstage α-syn pathology in the PFF-seeded, Rag1-deficient M83+/- mice. Together, these results suggested that MhcII function on immune cells other than these classical APCs is potentially involved in the propagation of α-syn in this model of experimental synucleinopathy. We focused on microglia next, finding that while microglial burden was significantly upregulated in PFF-seeded, MhcII-deficient mice relative to controls, the microglial activation marker Cd68 was reduced in these mice, suggesting that these microglia were not responsive. Additional analysis of the CNS showed the early appearance of the neurotoxic astrocyte A1 signature and the induction of the Ifnγ-inducible anti-viral response mediated by MhcI in the MhcII-deficient, PFF-seeded mice. Overall, our data suggest that the loss of MhcII function leads to a dysfunctional response in non-classical APCs and that this response could potentially play a role in determining PFF-induced pathology. Collectively, our results identify the critical role of MhcII function in synucleinopathies induced by α-syn prion seeds.
Collapse
Affiliation(s)
- Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Katie Moon
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Karen N. McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mary Weinrich
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
| | - Tristan Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (E.G.D.L.C.); (Q.V.); (K.M.); (K.N.M.); (M.W.); (T.W.); (B.I.G.)
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Churilova A, Zachepilo T, Baranova K, Rybnikova E. Differences in the Autophagy Response to Hypoxia in the Hippocampus and Neocortex of Rats. Int J Mol Sci 2022; 23:ijms23148002. [PMID: 35887346 PMCID: PMC9320385 DOI: 10.3390/ijms23148002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a regulated mechanism of degradation of misfolded proteins and organelles in the cell. Neurons are highly differentiated cells with extended projections, and therefore, their functioning largely depends on the mechanisms of autophagy. For the first time in an animal model using immunohistochemistry, dot analysis, and qRT-PCR, the autophagy (macroautophagy) activity in neurons of two brain regions (hippocampus and neocortex) under normoxia and after exposure to hypoxia was studied. It was found that under normoxia, the autophagic activity was higher in the hippocampal neurons than in the neocortex of rats. In the hippocampus, the exposure of rats to hypoxia resulted in a decrease in the content of autophagy markers LC3 and p62, which was followed by activation of the autophagy-related gene expression. In the neocortex, no changes in these marker proteins were observed after the exposure to hypoxia. These data indicate that the neurons in the hippocampus and neocortex differ in the autophagy response to hypoxia, which may reflect the physiological and functional differences of the pyramidal cells of these brain regions and may to some extent account for the extreme vulnerability of the CA1 hippocampal neurons and relatively high resistance of the neocortical neurons to hypoxia.
Collapse
Affiliation(s)
- Anna Churilova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
| | - Tatiana Zachepilo
- Laboratory of Genetics of Higher Nervous Activity, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia;
| | - Ksenia Baranova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
- Correspondence: ; Tel.: +7-911-954-1596
| |
Collapse
|
37
|
Abstract
Macroautophagy is an evolutionarily conserved process that delivers diverse cellular contents to lysosomes for degradation. As our understanding of this pathway grows, so does our appreciation for its importance in disorders of the CNS. Once implicated primarily in neurodegenerative events owing to acute injury and ageing, macroautophagy is now also linked to disorders of neurodevelopment, indicating that it is essential for both the formation and maintenance of a healthy CNS. In parallel to understanding the significance of macroautophagy across contexts, we have gained a greater mechanistic insight into its physiological regulation and the breadth of cargoes it can degrade. Macroautophagy is a broadly used homeostatic process, giving rise to questions surrounding how defects in this single pathway could cause diseases with distinct clinical and pathological signatures. To address this complexity, we herein review macroautophagy in the mammalian CNS by examining three key features of the process and its relationship to disease: how it functions at a basal level in the discrete cell types of the brain and spinal cord; which cargoes are being degraded in physiological and pathological settings; and how the different stages of the macroautophagy pathway intersect with diseases of neurodevelopment and adult-onset neurodegeneration.
Collapse
Affiliation(s)
- Christopher J Griffey
- Doctoral Program in Neurobiology and Behaviour, Medical Scientist Training Program, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology, and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Feng H, Cui Y, Liu J, Liu M, Zhou W, Yan Z, Zhang H, Wang Y, Wang X, Liu X, Chen N. Effects of 3-Methyladenine on Microglia Autophagy and Neuronal Apoptosis After Radiation-Induced Brain Injury. Dose Response 2022; 20:15593258221100593. [PMID: 35615570 PMCID: PMC9125074 DOI: 10.1177/15593258221100593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022] Open
Abstract
Objective To determine the effect of the autophagy inhibitor, 3-methyladenine (3-MA), on cognitive function changes, microglia activity, neuronal apoptosis, and inflammation in rats following radiation-induced brain injury. Methods The following groups were established: control, model, and 3-MA. A rat model of radiation-induced brain injury was generated with a medium dose of X-rays. A Morris water maze was used to observe the cognitive function of the rats. H&E staining was used to observe the pathological changes in the hippocampus. The morphological and quantitative changes of neuronal nuclear (NeuN)-positive neurons and Iba-1-positive microglia in the ipsilateral hippocampus were analyzed by immunohistochemistry. Western blot analysis was done to measure the changes of NeuN ionized calcium binding adapter molecule 1(Iba-1) and apoptosis-related proteins. Immunofluorescence staining of Iba-1 and Microtuble-associated protein light chain 3 (LC3) was done to evaluate the changes in microglia autophagy. TUNEL staining was used to detect apoptosis in the hippocampus. Enzyme-Linked Immunosorbent Assay was used to detect the levels of TNF-α and IL-6 as a measure of the inflammatory response in the hippocampus. Results After irradiation, the nucleus of the neurons in the hippocampus was constricted, the pyramidal tract structure was disordered, neuronal apoptosis was increased (P < .001), the expression of microglia increased (P < .01), autophagy was increased (P < .05), and conversion of microglia to the M2 type increased (P < .05). After 3-MA administration, the level of autophagy decreased (P < .05), the damage to the hippocampal region was reduced, neuronal apoptosis decreased (P < .01), and the activity of the microglia decreased (P < .01). Conclusion Radiation can active the Microglia. 3-MA inhibits autophagy and excessive activity in microglia, and promotes the conversion of microglia from the M1 to the M2 type, thereby promoting the recovery of brain tissue following radiation exposure.
Collapse
Affiliation(s)
- Huichao Feng
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yahuan Cui
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jing Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Meiyi Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Wei Zhou
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Zhenyu Yan
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Haixia Zhang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yingman Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xueming Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xiaomin Liu
- Gamma Knife Center, Department of Neurological Surgery, Tianjin University, Tianjin, China
| | - Naiyao Chen
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
39
|
Zajicek AS, Ruan H, Dai H, Skolfield MC, Phillips HL, Burnette WJ, Javidfar B, Sun SC, Akbarian S, Yao WD. Cylindromatosis drives synapse pruning and weakening by promoting macroautophagy through Akt-mTOR signaling. Mol Psychiatry 2022; 27:2414-2424. [PMID: 35449295 PMCID: PMC9278694 DOI: 10.1038/s41380-022-01571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The lysine-63 deubiquitinase cylindromatosis (CYLD) is long recognized as a tumor suppressor in immunity and inflammation, and its loss-of-function mutations lead to familial cylindromatosis. However, recent studies reveal that CYLD is enriched in mammalian brain postsynaptic densities, and a gain-of-function mutation causes frontotemporal dementia (FTD), suggesting critical roles at excitatory synapses. Here we report that CYLD drives synapse elimination and weakening by acting on the Akt-mTOR-autophagy axis. Mice lacking CYLD display abnormal sociability, anxiety- and depression-like behaviors, and cognitive inflexibility. These behavioral impairments are accompanied by excessive synapse numbers, increased postsynaptic efficacy, augmented synaptic summation, and impaired NMDA receptor-dependent hippocampal long-term depression (LTD). Exogenous expression of CYLD results in removal of established dendritic spines from mature neurons in a deubiquitinase activity-dependent manner. In search of underlying molecular mechanisms, we find that CYLD knockout mice display marked overactivation of Akt and mTOR and reduced autophagic flux, and conversely, CYLD overexpression potently suppresses Akt and mTOR activity and promotes autophagy. Consequently, abrogating the Akt-mTOR-autophagy signaling pathway abolishes CYLD-induced spine loss, whereas enhancing autophagy in vivo by the mTOR inhibitor rapamycin rescues the synaptic pruning and LTD deficits in mutant mice. Our findings establish CYLD, via Akt-mTOR signaling, as a synaptic autophagy activator that exerts critical modulations on synapse maintenance, function, and plasticity.
Collapse
Affiliation(s)
- Alexis S Zajicek
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hongyu Ruan
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Huihui Dai
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mary C Skolfield
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah L Phillips
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Wendi J Burnette
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Behnam Javidfar
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Harvard Medical School, New England Primate Research Center, Southborough, MA, USA.
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
40
|
Riera-Tur I, Schäfer T, Hornburg D, Mishra A, da Silva Padilha M, Fernández-Mosquera L, Feigenbutz D, Auer P, Mann M, Baumeister W, Klein R, Meissner F, Raimundo N, Fernández-Busnadiego R, Dudanova I. Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Sci Alliance 2021; 5:5/3/e202101185. [PMID: 34933920 PMCID: PMC8711852 DOI: 10.26508/lsa.202101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Using cryo-ET, cell biology, and proteomics, this study shows that aggregating proteins impair the autophagy-lysosomal pathway in neurons by sequestering a subunit of the AP-3 adaptor complex. The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.
Collapse
Affiliation(s)
- Irene Riera-Tur
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tillman Schäfer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Archana Mishra
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Miguel da Silva Padilha
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Lorena Fernández-Mosquera
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dennis Feigenbutz
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Patrick Auer
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Irina Dudanova
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany .,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
41
|
Pircs K, Drouin-Ouellet J, Horváth V, Gil J, Rezeli M, Garza R, Grassi DA, Sharma Y, St-Amour I, Harris K, Jönsson ME, Johansson PA, Vuono R, Fazal SV, Stoker T, Hersbach BA, Sharma K, Lagerwall J, Lagerström S, Storm P, Hébert SS, Marko-Varga G, Parmar M, Barker RA, Jakobsson J. Distinct subcellular autophagy impairments in induced neurons from Huntington’s disease patients. Brain 2021; 145:3035-3057. [PMID: 34936701 PMCID: PMC9473361 DOI: 10.1093/brain/awab473] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/09/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.
Collapse
Affiliation(s)
- Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Janelle Drouin-Ouellet
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, H3 T 1J4, Canada
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jeovanis Gil
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, Lund University, S-221 85, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Daniela A. Grassi
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
- CERVO Brain Research Center – Université Laval, Québec, QC G1E 1T2, Canada
| | - Kate Harris
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Pia A. Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Romina Vuono
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Shaline V. Fazal
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Thomas Stoker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Bob A. Hersbach
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Kritika Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jessica Lagerwall
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Stina Lagerström
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
| | - György Marko-Varga
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Roger A. Barker
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| |
Collapse
|
42
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
43
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
44
|
Dai W, Xiao Y, Tu Y, Xiao F, Lu Y, Qin Y, Xie Y. Propofol protects hippocampal neurons in sleep-deprived rats by inhibiting mitophagy and autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1427. [PMID: 34733979 PMCID: PMC8506745 DOI: 10.21037/atm-21-3872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022]
Abstract
Background Sleep deprivation (SD) causes a disturbance in the cognitive function of rats. While propofol has a powerful sedative and hypnotic effect and is an antioxidant, its effect on the cognitive function of rats following SD remains unknown. The purpose of this study was to explore the protective effects of propofol on excessive autophagy and mitophagy in the hippocampus of rats after SD. Methods Adult male rats were intraperitoneally injected with 30 mg/kg of propofol after 96 hours of SD. Then we evaluated the effect of propofol on the cognitive function of sleep deprived rats by the Morris water maze. Transmission electron microscopy, Western blotting, PCR, immunohistochemistry, autophagy enhancer and autophagy inhibitor were used to study the effect of propofol on hippocampal neurons of rat with excessive autophagy and mitophagy. Results The behavioral experimental results of the Morris water maze showed that propofol improved the learning and memory ability of sleep-deprived rats. The expression of Beclin1, PINK1, parkin, p62, and LC3 protein increased significantly after sleep deprivation. While the intervention of propofol could significantly reduce the expression of these proteins, rapamycin treatment eliminated this effect. Conclusions Our findings showed that propofol could reduce the impairment of learning and memory in sleep-deprived rats by inhibiting excessive autophagy and mitophagy in hippocampal neurons. This strategy may provide an application basis for the clinical use of propofol in patients with chronic insomnia.
Collapse
Affiliation(s)
- Weixin Dai
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong Xiao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youbing Tu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Xiao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhi Lu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yinying Qin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Gao X, Yu M, Sun W, Han Y, Yang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in primary cultured rat cortical neurons through Akt/mTOR and AMPK/mTOR signaling pathways. Food Chem Toxicol 2021; 158:112632. [PMID: 34688703 DOI: 10.1016/j.fct.2021.112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Autophagy is a lysosome dependent degradation pathway occurring in eukaryotic cells. Autophagy ensures balance and survival mechanism of cells during harmful stress. Excessive or weak autophagy leads to abnormal function and death in some cases. Lanthanum (La), a rare earth element (REE), damages the central nervous system (CNS) and promotes learning and memory dysfunction. However, underlying mechanism has not been fully elucidated. La induces oxidative stress, inhibits Nrf2/ARE and Akt/mTOR signaling pathways, and activates JNK/c-Jun and JNK/Foxo signaling pathways, resulting in abnormal induction of autophagy in rat hippocampus. In addition, La activates PINK1- Parkin signaling pathway and induces mitochondrial autophagy. However, the relationship between La and autophagy in rat neurons at the cellular level has not been explored previously. The aim of this study was to explore adverse effects of La. Primary culture of rat neurons were exposed to 0 mmol/L, 0.025 mmol/L, 0.05 mmol/L and 0.1 mmol/L lanthanum chloride (LaCl3). The results showed that La upregulates p-AMPK, inhibits levels of p-Akt and p-mTOR, increases levels of autophagy related proteins (Beclin1 and LC3B-II), and downregulates expression of p-Bcl-2 and p62. Upstream and downstream intervention agents of autophagy were used to detect autophagy flux to verify accuracy of our results. Electron microscopy results showed significant increase in the number of autophagosomes in LaCl3 exposed groups. These findings imply that LaCl3 inhibits Akt/mTOR signaling pathway and activates AMPK/mTOR signaling pathway, resulting in abnormal autophagy in primary cultured rat cortical neurons. In addition, LaCl3 induces neuronal damage through excessive autophagy.
Collapse
Affiliation(s)
- Xiang Gao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China; Department of Biostatistics, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Miao Yu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yarao Han
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
46
|
Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J 2021; 40:e107204. [PMID: 34435379 PMCID: PMC8488563 DOI: 10.15252/embj.2020107204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N‐deacetylase and N‐sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α‐tubulin. Loss of NDST3 promotes assembly of the V‐ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly‐dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol 2021; 344:113795. [PMID: 34186102 PMCID: PMC8338805 DOI: 10.1016/j.expneurol.2021.113795] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. METH addiction is also a major public health concern and the abuse of large doses of the drug is often associated with serious neuropsychiatric consequences that may include agitation, anxiety, hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from attention, memory, and executive deficits. METH-associated neurological and psychiatric complications might be related, in part, to METH-induced neurotoxic effects. Those include altered dopaminergic and serotonergic functions, neuronal apoptosis, astrocytosis, and microgliosis. Here we have endeavored to discuss some of the main effects of the drug and have presented the evidence supporting certain of the molecular and cellular bases of METH neurotoxicity. The accumulated evidence suggests the involvement of transcription factors, activation of dealth pathways that emanate from mitochondria and endoplasmic reticulum (ER), and a role for neuroinflammatory mechanisms. Understanding the molecular processes involved in METH induced neurotoxicity should help in developing better therapeutic approaches that might also serve to attenuate or block the biological consequences of use of large doses of the drug by some humans who meet criteria for METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America.
| |
Collapse
|
48
|
Grisan F, Iannucci LF, Surdo NC, Gerbino A, Zanin S, Di Benedetto G, Pozzan T, Lefkimmiatis K. PKA compartmentalization links cAMP signaling and autophagy. Cell Death Differ 2021; 28:2436-2449. [PMID: 33742135 PMCID: PMC8328970 DOI: 10.1038/s41418-021-00761-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.
Collapse
Affiliation(s)
- Francesca Grisan
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Liliana F Iannucci
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nicoletta C Surdo
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sofia Zanin
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giulietta Di Benedetto
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy
- Neuroscience Institute, National Research Council, Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua, Italy
| | - Konstantinos Lefkimmiatis
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine, Padua, Italy.
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
49
|
Wang H, Robinson JL, Kocabas P, Gustafsson J, Anton M, Cholley PE, Huang S, Gobom J, Svensson T, Uhlen M, Zetterberg H, Nielsen J. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc Natl Acad Sci U S A 2021; 118:e2102344118. [PMID: 34282017 PMCID: PMC8325244 DOI: 10.1073/pnas.2102344118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer's disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Pinar Kocabas
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gustafsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Pierre-Etienne Cholley
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Shan Huang
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 30 Mölndal, Sweden
| | - Thomas Svensson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mattias Uhlen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Center for Protein Research, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 30 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1E 6BT, United Kingdom
- UK Dementia Research Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute, DK2200 Copenhagen, Denmark
| |
Collapse
|
50
|
Grosso Jasutkar H, Yamamoto A. Do Changes in Synaptic Autophagy Underlie the Cognitive Impairments in Huntington's Disease? J Huntingtons Dis 2021; 10:227-238. [PMID: 33780373 PMCID: PMC8293641 DOI: 10.3233/jhd-200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Huntington's disease (HD) is classically considered from the perspective of the motor syndrome, the cognitive changes in HD are prominent and often an early manifestation of disease. As such, investigating the underlying pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. In this review, we first discuss evidence from both HD patients and animal models that cognitive changes correlate with early pathological changes at the synapse, an observation that is similarly made in other neurodegenerative conditions that primarily affect cognition. We then describe how autophagy plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease.
Collapse
Affiliation(s)
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|