1
|
Emili M, Stagni F, Guidi S, Russo C, Chevalier C, Duchon A, Herault Y, Bartesaghi R. Dendritic phenotype and proliferation potency in the hippocampal dentate gyrus of the Ts66Yah model of Down syndrome. Neurosci Lett 2025; 850:138156. [PMID: 39929391 DOI: 10.1016/j.neulet.2025.138156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
The Ts65Dn mouse is the most widely used model of Down syndrome (DS), although, in addition to the triplication of 90 genes homologous to Human Chromosome 21 (Hsa21) genes, it bears the triplication of 46 extra genes. To clarify the latter's impact, the Ts66Yah model has been created from the Ts65Dn mouse by exploiting CRISPR/Cas9 technology for extra gene deletion. It has been found that, similar to the Ts65Dn model, the Ts66Yah model exhibits impairment in hippocampus-dependent learning and memory and age-related hippocampal deterioration, with no increased activity. We examine here the dendritic development of the hippocampal granule neurons and the proliferation potency of granule cell precursors in Ts66Yah mice because these phenotypes are impaired in Ts65Dn mice and individuals with DS starting from early life stages and are thought to underpin cognitive impairment. In Ts66Yah mice aged 15 days and those aged three months, we found no reduction in dendritic arborization, dendritic spine density, proliferation potency, or total number of granule cells, suggesting that other mechanisms may underpin the behavioral impairment found in the Ts66Yah model in adulthood. Thus, the Ts66Yah model is unsuitable to study these neurodevelopmental alterations, although it may be useful to study other DS-related phenotypes.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies (QUVI), University of Bologna, Corso D'Augusto 237 47921 Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies (QUVI), University of Bologna, Corso D'Augusto 237 47921 Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta San Donato 2 40126 Bologna, Italy
| | - Carla Russo
- Department for Life Quality Studies (QUVI), University of Bologna, Corso D'Augusto 237 47921 Rimini, Italy
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of TranslationalMedicine and Neurogenetics, 1 rue Laurent Fries 67404 Illkirch-Graffenstaden, France
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of TranslationalMedicine and Neurogenetics, 1 rue Laurent Fries 67404 Illkirch-Graffenstaden, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of TranslationalMedicine and Neurogenetics, 1 rue Laurent Fries 67404 Illkirch-Graffenstaden, France; Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries 67404 Illkirch-Graffenstaden, France.
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta San Donato 2 40126 Bologna, Italy.
| |
Collapse
|
2
|
Kozlov G, Franceschi C, Vedunova M. Intricacies of aging and Down syndrome. Neurosci Biobehav Rev 2024; 164:105794. [PMID: 38971514 DOI: 10.1016/j.neubiorev.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Down syndrome is the most frequently occurring genetic condition, with a substantial escalation in risk associated with advanced maternal age. The syndrome is characterized by a diverse range of phenotypes, affecting to some extent all levels of organization, and its progeroid nature - early manifestation of aspects of the senile phenotype. Despite extensive investigations, many aspects and mechanisms of the disease remain unexplored. The current review aims to provide an overview of the main causes and manifestations of Down syndrome, while also examining the phenomenon of accelerated aging and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- G Kozlov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - C Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| |
Collapse
|
3
|
Faralli A, Fucà E, Lazzaro G, Menghini D, Vicari S, Costanzo F. Transcranial Direct Current Stimulation in neurogenetic syndromes: new treatment perspectives for Down syndrome? Front Cell Neurosci 2024; 18:1328963. [PMID: 38456063 PMCID: PMC10917937 DOI: 10.3389/fncel.2024.1328963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
This perspective review aims to explore the potential neurobiological mechanisms involved in the application of transcranial Direct Current Stimulation (tDCS) for Down syndrome (DS), the leading cause of genetically-based intellectual disability. The neural mechanisms underlying tDCS interventions in genetic disorders, typically characterized by cognitive deficits, are grounded in the concept of brain plasticity. We initially present the neurobiological and functional effects elicited by tDCS applications in enhancing neuroplasticity and in regulating the excitatory/inhibitory balance, both associated with cognitive improvement in the general population. The review begins with evidence on tDCS applications in five neurogenetic disorders, including Rett, Prader-Willi, Phelan-McDermid, and Neurofibromatosis 1 syndromes, as well as DS. Available evidence supports tDCS as a potential intervention tool and underscores the importance of advancing neurobiological research into the mechanisms of tDCS action in these conditions. We then discuss the potential of tDCS as a promising non-invasive strategy to mitigate deficits in plasticity and promote fine-tuning of the excitatory/inhibitory balance in DS, exploring implications for cognitive treatment perspectives in this population.
Collapse
Affiliation(s)
- Alessio Faralli
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
- Life Sciences and Public Health Department, Catholic University of Sacred Heart, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
4
|
Chen XQ, Sawa M, Becker A, Karachentsev D, Zuo X, Rynearson KD, Tanzi RE, Mobley WC. Retromer Proteins Reduced in Down Syndrome and the Dp16 Model: Impact of APP Dose and Preclinical Studies of a γ-Secretase Modulator. Ann Neurol 2023; 94:245-258. [PMID: 37042072 DOI: 10.1002/ana.26659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/11/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE The retromer complex plays an essential role in intracellular endosomal sorting. Deficits in the retromer complex are linked to enhanced Aβ production. The levels of the components of the retromer complex are reported to be downregulated in Alzheimer disease (AD). Down syndrome (DS) shares neuropathological features with AD. Recent evidence points to dysregulation of the retromer complex in DS. The mechanisms underlying retromer deficits in DS and AD are poorly understood. METHODS We measured the levels of retromer components in the frontal cortex of cases of DS-AD (AD in DS) as well as DS; the frontal cortex of a person partially trisomic (PT-DS) for human chromosome 21 (HSA21), whose genome had only the normal 2 copies of the APP gene, was also examined. We also analyzed these proteins in the Dp16 mouse model of DS. To further explore the molecular mechanism for changes in the retromer complex, we treated Dp16 mice with a γ-secretase modulator (GSM; 776890), a treatment that reduces the levels of Aβ42 and Aβ40. RESULTS We found VPS26A, VPS26B, and VPS29, but not VPS35, were significantly reduced in both DS and DS-AD, but not in PT-DS. Downregulation of VPS26A, VPS26B, and VPS29 was recapitulated in the brains of old Dp16 mice (at 16 months of age) and required increased App gene dose. Significantly, GSM treatment completely prevented reductions of the retromer complex. INTERPRETATION Our studies point to increased APP gene dose as a compromising retromer function in DS and suggest a causal role for Aβ42 and Aβ40. ANN NEUROL 2023;94:245-258.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mariko Sawa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Dmitry Karachentsev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Xinxin Zuo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Chen XQ, Zuo X, Becker A, Head E, Mobley WC. Reduced synaptic proteins and SNARE complexes in Down syndrome with Alzheimer's disease and the Dp16 mouse Down syndrome model: Impact of APP gene dose. Alzheimers Dement 2023; 19:2095-2116. [PMID: 36370135 PMCID: PMC10175517 DOI: 10.1002/alz.12835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction. METHODS Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls. The same proteins were examined in the Dp16 model of DS. RESULTS A common subset of synaptic proteins were reduced in AD and AD-DS, but not in DS or a case of partial trisomy 21 lacking triplication of APP gene. Pointing to compromised synaptic function, the reductions in AD and AD-DS were correlated with reduced SNARE complexes. In Dp16 mice reductions in syntaxin 1A, SNAP25 and the SNARE complex recapitulated findings in AD-DS; reductions were impacted by both age and increased App gene dose. DISCUSSION Synaptic phenotypes shared between AD-DS and AD point to shared pathogenetic mechanisms.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Xinxin Zuo
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
7
|
Morsiani C, Bacalini MG, Collura S, Moreno-Villanueva M, Breusing N, Bürkle A, Grune T, Franceschi C, De Eguileor M, Capri M. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down Syndrome. Mech Ageing Dev 2022; 206:111691. [PMID: 35780970 DOI: 10.1016/j.mad.2022.111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Persons with Down Syndrome (DS) undergo a premature ageing with early onset of age-related diseases. The main endpoint of this study was the identification of blood circulating microRNAs (c-miRs) signatures characterizing DS ageing process. A discovery phase based on array was performed in plasma samples obtained from 3 young (31±2 years-old) and 3 elderly DS persons (66±2 years-old). Then, a validation phase was carried out for relevant miRs by RT-qPCR in an enlarged cohort of 43 DS individuals (from 19 up to 68 years-old). A group of 30 non-trisomic subjects, as representative of physiological ageing, was compared. In particular miR-628-5p, miR-152-3p, miR-28-5p, and let-7d-5p showed a lower level in younger DS persons (age ≤ 50 years) respect to the age-matched controls. Among those, miR-28-5p and let-7d-5p were found significantly decreased in physiological ageing (control group with age threshold of 50 years), thus they emerged as possible biomarkers of premature ageing in DS. Moreover, measuring blood levels of beta amyloid peptides, Aβ-42 was assessed at the lowest levels in physiological ageing and correlated with miR-28-5p and let-7d-5p in DS, while Aβ-40 correlated with miR-628-5p in the same cohort. New perspectives in terms of biomarkers are discussed.
Collapse
Affiliation(s)
- Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy.
| | | | - Salvatore Collura
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Magda De Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy; Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Italy
| |
Collapse
|