1
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Banerjee A, Ranjan A, Kumar M, Kumar S, Bansal A, Mahto M. Antinuclear antibody (ANA) positivity pattern by line immunoassay in a hospital from eastern India: Update from a laboratory perspective. J Family Med Prim Care 2024; 13:1254-1261. [PMID: 38827670 PMCID: PMC11141993 DOI: 10.4103/jfmpc.jfmpc_1170_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 06/04/2024] Open
Abstract
Context The existence of more than one antibody in systemic autoimmune rheumatic diseases (SARDs) or connective tissue disease (CTD) along with features of more than one autoimmune disease (AD) in an individual is suggestive of overlap syndrome (OS). Line immunoassay (LIA) can target many autoantibodies in a single approach, thus making the identification of OS feasible. Aims and Objectives This study aimed to identify the pattern of distribution of antinuclear antibodies by LIA prevalent in a hospital population in eastern India and identify common forms of SARD in this belt based on laboratory findings. Material and Methods A total of 1660 samples received for ANA profile testing by LIA were analysed. Statistical Analysis Factor analysis was performed with factor loading scores used in the k-means algorithm to identify clustering of various autoantibodies. Results U1-snRNP positivity was the highest at 16.69%, and the least frequent autoantibody noted was anti-Jo-1 at 0.71% positivity. Based on the outcome of factor analysis, three clusters were determined. Cluster 1 showed a predominance of anti-PM/Scl antibodies, cluster 2 showed a predominance of anti-dsDNA, anti-histone, anti-SmD1, anti-nucleosomes, anti-PCNA, anti-Po, anti-SSA/Ro52, anti-SSA-Ro60, anti-SSB/La, anti-Scl-70, anti-Mi-2, anti-Ku and anti-AMA-M2, and cluster 3 showed a predominance of anti-U1-snRNP. Conclusions Mixed connective tissue disease (MCTD) and overlap syndrome (OS) are prevalent more than pure form of an AD in our study population. OS may be missed out by monospecific immunoassays and hence adds to diagnostic challenges. LIA may be more useful in identifying specific autoantibodies by a single approach rather than monospecific immunoassays in populations after a positive screen by indirect immunofluorescence (IIF).
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, AIIMS Patna, Patna, Bihar, India
| | - Alok Ranjan
- Department of CFM, AIIMS Patna, Patna, Bihar, India
| | - Mukunda Kumar
- Department of Biochemistry, AIIMS Patna, Patna, Bihar, India
| | - Sushil Kumar
- Department of Biochemistry, AIIMS Patna, Patna, Bihar, India
| | - Akash Bansal
- Department of Biochemistry, AIIMS Patna, Patna, Bihar, India
| | - Mala Mahto
- Department of Biochemistry, AIIMS Patna, Patna, Bihar, India
| |
Collapse
|
3
|
Zavrtanik U, Medved T, Purič S, Vranken W, Lah J, Hadži S. Leucine Motifs Stabilize Residual Helical Structure in Disordered Proteins. J Mol Biol 2024; 436:168444. [PMID: 38218366 DOI: 10.1016/j.jmb.2024.168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Many examples are known of regions of intrinsically disordered proteins that fold into α-helices upon binding to their targets. These helical binding motifs (HBMs) can be partially helical also in the unbound state, and this so-called residual structure can affect binding affinity and kinetics. To investigate the underlying mechanisms governing the formation of residual helical structure, we assembled a dataset of experimental helix contents of 65 peptides containing HBM that fold-upon-binding. The average residual helicity is 17% and increases to 60% upon target binding. The helix contents of residual and target-bound structures do not correlate, however the relative location of helix elements in both states shows a strong overlap. Compared to the general disordered regions, HBMs are enriched in amino acids with high helix preference and these residues are typically involved in target binding, explaining the overlap in helix positions. In particular, we find that leucine residues and leucine motifs in HBMs are the major contributors to helix stabilization and target-binding. For the two model peptides, we show that substitution of leucine motifs to other hydrophobic residues (valine or isoleucine) leads to reduction of residual helicity, supporting the role of leucine as helix stabilizer. From the three hydrophobic residues only leucine can efficiently stabilize residual helical structure. We suggest that the high occurrence of leucine motifs and a general preference for leucine at binding interfaces in HBMs can be explained by its unique ability to stabilize helical elements.
Collapse
Affiliation(s)
- Uroš Zavrtanik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Medved
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Samo Purič
- Graduate Study Program, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wim Vranken
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB Structural Biology Research Centre, Brussels 1050, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Santhouse JR, Leung JMG, Chong LT, Horne WS. Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein. Chem Sci 2024; 15:675-682. [PMID: 38179541 PMCID: PMC10763558 DOI: 10.1039/d3sc03976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
Sequence-encoded protein folding is a ubiquitous biological process that has been successfully engineered in a range of oligomeric molecules with artificial backbone chemical connectivity. A remarkable aspect of protein folding is the contrast between the rapid rates at which most sequences in nature fold and the vast number of conformational states possible in an unfolded chain with hundreds of rotatable bonds. Research efforts spanning several decades have sought to elucidate the fundamental chemical principles that dictate the speed and mechanism of natural protein folding. In contrast, little is known about how protein mimetic entities transition between an unfolded and folded state. Here, we report effects of altered backbone connectivity on the folding kinetics and mechanism of the B domain of Staphylococcal protein A (BdpA), an ultrafast-folding sequence. A combination of experimental biophysical analysis and atomistic molecular dynamics simulations performed on the prototype protein and several heterogeneous-backbone variants reveal the interplay among backbone flexibility, folding rates, and structural details of the transition state ensemble. Collectively, these findings suggest a significant degree of plasticity in the mechanisms that can give rise to ultrafast folding in the BdpA sequence and provide atomic level insights into how protein mimetic chains adopt an ordered folded state.
Collapse
Affiliation(s)
| | - Jeremy M G Leung
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
5
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
|
7
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
8
|
Mendez-Rayo T, Ochoa-Zárate L, Posso-Osorio I, Ortiz E, Naranjo-Escobar J, Tobón GJ. Interpretation of autoantibodies in rheumatological diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.rcreue.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Rahamim G, Amir D, Haas E. Simultaneous Determination of Two Subdomain Folding Rates Using the "Transfer-Quench" Method. Biophys J 2017; 112:1786-1796. [PMID: 28494950 DOI: 10.1016/j.bpj.2017.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 11/29/2022] Open
Abstract
The investigation of the mechanism of protein folding is complicated by the context dependence of the rates of intramolecular contact formation. Methods based on site-specific labeling and ultrafast spectroscopic detection of fluorescence signals were developed for monitoring the rates of individual subdomain folding transitions in situ, in the context of the whole molecule. However, each site-specific labeling modification might affect rates of folding of near-neighbor structural elements, and thus limit the ability to resolve fine differences in rates of folding of these elements. Therefore, it is highly desirable to be able to study the rates of folding of two or more neighboring subdomain structures using a single mutant to facilitate resolution of the order and interdependence of such steps. Here, we report the development of the "Transfer-Quench" method for measuring the rate of formation of two structural elements using a single triple-labeled mutant. This method is based on Förster resonance energy transfer combined with fluorescence quenching. We placed the donor and acceptor at the loop ends, and a quencher at an α-helical element involved in the node forming the loop. The folding of the triple-labeled mutant is monitored by the acceptor emission. The formation of nonlocal contact (loop closure) increases the time-dependent acceptor emission, while the closure of the labeled helix turn reduces this emission. The method was applied in a study of the folding mechanism of the common model protein, the B domain of staphylococcal protein A. Only natural amino acids were used as probes, and thus possible structural perturbations were minimized. Tyr and Trp residues served as donor and acceptor at the ends of a long loop between helices I and II, and a Cys residue as a quencher for the acceptor. We found that the closure of the loop (segment 14-33) occurs with the same rate constant as the nucleation of helix HII (segment 33-29), in line with the nucleation-condensation model.
Collapse
Affiliation(s)
- Gil Rahamim
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan, Israel
| | - Dan Amir
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan, Israel
| | - Elisha Haas
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
10
|
Malhotra P, Udgaonkar JB. How cooperative are protein folding and unfolding transitions? Protein Sci 2016; 25:1924-1941. [PMID: 27522064 PMCID: PMC5079258 DOI: 10.1002/pro.3015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.
Collapse
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
11
|
Highly polarized C-terminal transition state of the leucine-rich repeat domain of PP32 is governed by local stability. Proc Natl Acad Sci U S A 2015; 112:E2298-306. [PMID: 25902505 DOI: 10.1073/pnas.1412165112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The leucine-rich repeat domain of PP32 is composed of five β-strand-containing repeats anchored by terminal caps. These repeats differ in sequence but are similar in structure, providing a means to connect topology, sequence, and folding pathway selection. Through kinetic studies of PP32, we find folding to be rate-limited by the formation of an on-pathway intermediate. Destabilizing core substitutions reveal a transition state ensemble that is highly polarized toward the C-terminal repeat and cap. To determine if this nucleus for folding corresponds to the most stable region of PP32, we monitored amide hydrogen exchange by NMR spectroscopy. Indeed, we find the highest protection to be biased toward the C terminus. Sequence manipulations that destabilize the C terminus spread out the transition state toward the middle of the protein. Consistent with results for helical ankyrin repeat proteins, these results suggest that local stabilities determine folding pathways.
Collapse
|
12
|
Applications of Magnetic Resonance to Biology. METHODS OF BIOCHEMICAL ANALYSIS 2015; 55:315-330. [PMID: 26173317 DOI: 10.1002/9781118859148.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
13
|
Circular Dichroism, Optical Rotary Dispersion, and Fluorescence Polarization. METHODS OF BIOCHEMICAL ANALYSIS 2015; 55:253-276. [PMID: 26173314 DOI: 10.1002/9781118859148.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
14
|
Ries J, Schwarze S, Johnson CM, Neuweiler H. Microsecond Folding and Domain Motions of a Spider Silk Protein Structural Switch. J Am Chem Soc 2014; 136:17136-44. [DOI: 10.1021/ja508760a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Julia Ries
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simone Schwarze
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christopher M. Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Hannes Neuweiler
- Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
|
16
|
Shiu YJ, Su C, Yeh YL, Liang KK, Hayashi M, Mo Y, Yan Y, Lin SH. Experimental and Theoretical Studies of Protein Folding-Unfolding. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Campanini B, Pioselli B, Raboni S, Felici P, Giordano I, D'Alfonso L, Collini M, Chirico G, Bettati S. Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:770-9. [PMID: 23357652 DOI: 10.1016/j.bbapap.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The armory of GFP mutants available to biochemists and molecular biologists is huge. Design and selection of mutants are usually driven by tailored spectroscopic properties, but some key aspects of stability, folding and dynamics of selected GFP variants still need to be elucidated. We have prepared, expressed and characterized three H148 mutants of the highly fluorescent variant GFPmut2. H148 is known to be involved in the H-bonding network surrounding the chromophore, and all the three mutants, H148G, H148R and H148K, show increased pKa values of the chromophore. Only H148G GFPmut2 (Mut2G) gave good expression and purification yields, indicating that position 148 is critical for efficient folding in vivo. The chemical denaturation of Mut2G was monitored by fluorescence emission, absorbance and far-UV circular dichroism spectroscopy. The mutation has little effect on the spectroscopic properties of the protein and on its stability in solution. However, the unfolding kinetics of the protein encapsulated in wet nanoporous silica gels, a system that allows to stabilize conformations that are poorly or only transiently populated in solution, indicate that the unfolding pathway of Mut2G is markedly different from the parent molecule. In particular, encapsulation allowed to identify an unfolding intermediate that retains a native-like secondary structure despite a destructured chromophore environment. Thus, H148 is a critical residue not only for the chromophoric and photodynamic properties, but also for the correct folding of GFP, and its substitution has great impact on expression yields and stability of the mature protein.
Collapse
Affiliation(s)
- Barbara Campanini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1001-20. [PMID: 20883829 DOI: 10.1016/j.bbapap.2010.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA; Universität Würzbug, Würzburg, Germany
| | | | | | | |
Collapse
|
19
|
Chen E, Everett ML, Holzknecht ZE, Holzknecht RA, Lin SS, Bowles DE, Parker W. Short-lived alpha-helical intermediates in the folding of beta-sheet proteins. Biochemistry 2010; 49:5609-19. [PMID: 20515035 DOI: 10.1021/bi100288q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of evidence point strongly toward the importance of highly alpha-helical intermediates in the folding of all globular proteins, regardless of their native structure. However, experimental refolding studies demonstrate no observable alpha-helical intermediate during refolding of some beta-sheet proteins and have dampened enthusiasm for this model of protein folding. In this study, beta-sheet proteins were hypothesized to have potential to form amphiphilic helices at a period of <3.6 residues/turn that matches or exceeds the potential at 3.6 residues/turn. Hypothetically, such potential is the basis for an effective and unidirectional mechanism by which highly alpha-helical intermediates might be rapidly disassembled during folding and potentially accounts for the difficulty in detecting highly alpha-helical intermediates during the folding of some proteins. The presence of this potential was confirmed, indicating that a model entailing ubiquitous formation of alpha-helical intermediates during the folding of globular proteins predicts previously unrecognized features of primary structure. Further, the folding of fatty acid binding protein, a predominantly beta-sheet protein that exhibits no apparent highly alpha-helical intermediate during folding, was dramatically accelerated by 2,2,2-trifluoroethanol, a solvent that stabilizes alpha-helical structure. This observation suggests that formation of an alpha-helix can be a rate-limiting step during folding of a predominantly beta-sheet protein and further supports the role of highly alpha-helical intermediates in the folding of all globular proteins.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95060, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. J Phys Chem A 2010; 114:4471-85. [PMID: 20166738 PMCID: PMC2849147 DOI: 10.1021/jp9117776] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition, a comparison between the structures that are representative of the minima in the free-energy profile along the essential collective coordinates of protein folding (computed by principal component analysis) and the free-energy profile projected along the virtual-bond dihedral angles gamma of the backbone revealed the key residues involved in the transitions between the different basins of the folding free-energy profile, in agreement with existing experimental data for 1E0L .
Collapse
Affiliation(s)
- Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
21
|
Zhdanov VP. Model of gene transcription including the return of a RNA polymerase to the beginning of a transcriptional cycle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:051925. [PMID: 20365024 DOI: 10.1103/physreve.80.051925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 10/10/2009] [Indexed: 05/29/2023]
Abstract
The gene transcription occurs via the RNA polymerase (RNAP) recruitment on the DNA promoter sequence, formation of a locally open DNA chain, promoter escape, steps of the RNA synthesis, and RNA and RNAP release after reading the final DNA base. Just after the end of the RNA synthesis, RNAP surrounds the closed DNA chain and may diffuse along DNA, desorb, or reach the promoter and start the RNA-synthesis cycle again. We present a generic kinetic model taking the latter steps into account and show analytically and by Monte Carlo simulations that it predicts transcriptional bursts even in the absence of explicit regulation of the transcription by master proteins.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
| |
Collapse
|
22
|
Milanesi L, Jelinska C, Hunter CA, Hounslow AM, Staniforth RA, Waltho JP. A Method for the Reversible Trapping of Proteins in Non-Native Conformations. Biochemistry 2008; 47:13620-34. [DOI: 10.1021/bi801362f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lilia Milanesi
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| | - Clare Jelinska
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| | - Christopher A. Hunter
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| | - Andrea M. Hounslow
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| | - Rosemary A. Staniforth
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| | - Jonathan P. Waltho
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, U.K., Centre for Chemical Biology, Krebs Institute for Biomolecular Science, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K., and Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
23
|
Maisuradze GG, Liwo A, Scheraga HA. Principal component analysis for protein folding dynamics. J Mol Biol 2008; 385:312-29. [PMID: 18952103 DOI: 10.1016/j.jmb.2008.10.018] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/01/2008] [Accepted: 10/03/2008] [Indexed: 12/01/2022]
Abstract
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Collapse
Affiliation(s)
- Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | |
Collapse
|
24
|
Abstract
We seek to understand the link between protein thermodynamics and protein structure in molecular detail. A classical approach to this problem involves assessing changes in protein stability resulting from added cosolvents. Under any given conditions, protein molecules in aqueous buffer are in equilibrium between unfolded and folded states, U(nfolded) <==> N(ative). Addition of organic osmolytes, small uncharged compounds found throughout nature, shift this equilibrium. Urea, a denaturing osmolyte, shifts the equilibrium toward U; trimethylamine N-oxide (TMAO), a protecting osmolyte, shifts the equilibrium toward N. Using the Tanford Transfer Model, the thermodynamic response to many such osmolytes has been dissected into groupwise free energy contributions. It is found that the energetics involving backbone hydrogen bonding controls these shifts in protein stability almost entirely, with osmolyte cosolvents simply dialing between solvent-backbone versus backbone-backbone hydrogen bonds, as a function of solvent quality. This reciprocal relationship establishes the essential link between protein thermodynamics and the protein's hydrogen-bonded backbone structure.
Collapse
Affiliation(s)
- D Wayne Bolen
- Department of Biochemistry and Molecular Biology and The Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, TX 77555-1052, USA.
| | | |
Collapse
|
25
|
Abstract
Experimental studies show that many proteins fold along sequential pathways defined by folding intermediates. An intermediate may not always be a single population of molecules but may consist of subpopulations that differ in their average structure. These subpopulations are likely to fold via independent pathways. Parallel folding and unfolding pathways appear to arise because of structural heterogeneity. For some proteins, the folding pathways can effectively switch either because different subpopulations of an intermediate get populated under different folding conditions, or because intermediates on otherwise hidden pathways get stabilized, leading to their utilization becoming discernible, or because mutations stabilize different substructures. Therefore, the same protein may fold via different pathways in different folding conditions. Multiple folding pathways make folding robust, and evolution is likely to have selected for this robustness to ensure that a protein will fold under the varying conditions prevalent in different cellular contexts.
Collapse
Affiliation(s)
- Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|
26
|
Folding of the KIX Domain: Characterization of the Equilibrium Analog of a Folding Intermediate using 15N/13C Relaxation Dispersion and Fast 1H/2H Amide Exchange NMR Spectroscopy. J Mol Biol 2008; 380:726-41. [DOI: 10.1016/j.jmb.2008.05.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/21/2022]
|
27
|
Tripp KW, Barrick D. Rerouting the folding pathway of the Notch ankyrin domain by reshaping the energy landscape. J Am Chem Soc 2008; 130:5681-8. [PMID: 18396879 DOI: 10.1021/ja0763201] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular nature of repeat proteins has made them a successful target for protein design. Ankyrin repeat, TPR, and leucine rich repeat domains that have been designed solely on consensus information have been shown to have higher thermostability than their biological counterparts. We have previously shown that we can reshape the energy landscape of a repeat protein by adding multiple C-terminal consensus ankyrin repeats to the five N-terminal repeats of the Notch ankyrin domain. Here we explore how the folding mechanism responds to reshaping of the energy landscape. We have used analogous substitutions of a conserved alanine with glycine in each repeat to determine the distribution of structure in the transition state ensembles of constructs containing one (Nank1-5C1) and two consensus (Nank1-5C2) ankyrin repeats. Whereas folding of the wild-type Notch ankyrin domain is slowed by substitutions in its central repeats, (1) folding of Nank1-5C1 and Nank1-5C2 is slowed by substitutions in the C-terminal repeats. Thus, the addition of C-terminal stabilizing repeats shifts the transition state ensemble toward the C-terminal repeats, rerouting the folding pathway of the ankyrin repeat domain. These findings indicate that, for the Notch ankyrin domain, folding pathways are selected based on local energetics.
Collapse
Affiliation(s)
- Katherine W Tripp
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
28
|
Courtemanche N, Barrick D. Folding thermodynamics and kinetics of the leucine-rich repeat domain of the virulence factor Internalin B. Protein Sci 2008; 17:43-53. [PMID: 18156467 DOI: 10.1110/ps.073166608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.
Collapse
Affiliation(s)
- Naomi Courtemanche
- T.C Jenkins Department of Biophysics, The John Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
29
|
Eun YJ, Kurt N, Sekhar A, Cavagnero S. Thermodynamic and kinetic characterization of apoHmpH, a fast-folding bacterial globin. J Mol Biol 2007; 376:879-97. [PMID: 18187151 DOI: 10.1016/j.jmb.2007.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/02/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Despite the widespread presence of the globin fold in most living organisms, only eukaryotic globins have been employed as model proteins in folding/stability studies so far. This work introduces the first thermodynamic and kinetic characterization of a prokaryotic globin, that is, the apo form of the heme-binding domain of flavohemoglobin (apoHmpH) from Escherichia coli. This bacterial globin has a widely different sequence but nearly identical structure to its eukaryotic analogues. We show that apoHmpH is a well-folded monomeric protein with moderate stability at room temperature [apparent Delta G degrees (UN(w))=-3.1+/-0.3 kcal mol(-1); m(UN)=-1.7 kcal mol(-1) M(-1)] and predominant alpha-helical structure. Remarkably, apoHmpH is the fastest-folding globin known to date, as it refolds about 4- to 16-fold more rapidly than its eukaryotic analogues (e.g., sperm whale apomyoglobin and soybean apoleghemoglobin), populating a compact kinetic intermediate (beta(I)=0.9+/-0.2) with significant helical content. Additionally, the single Trp120 (located in the native H helix) becomes locked into a fully native-like environment within 6 ms, suggesting that this residue and its closest spatial neighbors complete their folding at ultrafast (submillisecond) speed. In summary, apoHmpH is a bacterial globin that shares the general folding scheme (i.e., a rapid burst phase followed by slower rate-determining phases) of its eukaryotic analogues but displays an overall faster folding and a kinetic intermediate with some fully native-like traits. This study supports the view that the general folding features of bacterial and eukaryotic globins are preserved through evolution while kinetic details differ.
Collapse
Affiliation(s)
- Ye-Jin Eun
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
30
|
Multiple tryptophan probes reveal that ubiquitin folds via a late misfolded intermediate. J Mol Biol 2007; 374:791-805. [PMID: 17949746 DOI: 10.1016/j.jmb.2007.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/22/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Much of our understanding of protein folding mechanisms is derived from experiments using intrinsic fluorescence of natural or genetically inserted tryptophan (Trp) residues to monitor protein refolding and site-directed mutagenesis to determine the energetic role of amino acids in the native (N), intermediate (I) or transition (T) states. However, this strategy has limited use to study complex folding reactions because a single fluorescence probe may not detect all low-energy folding intermediates. To overcome this limitation, we suggest that protein refolding should be monitored with different solvent-exposed Trp probes. Here, we demonstrate the utility of this approach by investigating the controversial folding mechanism of ubiquitin (Ub) using Trp probes located at residue positions 1, 28, 45, 57, and 66. We first show that these Trp are structurally sensitive and minimally perturbing fluorescent probes for monitoring folding/unfolding of the protein. Using a conventional stopped-flow instrument, we show that ANS and Trp fluorescence detect two distinct transitions during the refolding of all five Trp mutants at low concentrations of denaturant: T(1), a denaturant-dependent transition and T(2), a slower transition, largely denaturant-independent. Surprisingly, some Trp mutants (Ub(M1W), Ub(S57W)) display Trp fluorescence changes during T(1) that are distinct from the expected U-->N transition suggesting that the denaturant-dependent refolding transition of Ub is not a U-->N transition but represents the formation of a structurally distinct I-state (U-->I). Alternatively, this U-->I transition could be also clearly distinguished by using a combination of two Trp mutations Ub(F45W-T66W) for which the two Trp probes that display fluorescence changes of opposite sign during T(1) and T(2) (Ub(F45W-T66W)). Global fitting of the folding/unfolding kinetic parameters and additional folding-unfolding double-jump experiments performed on Ub(M1W), a mutant with enhanced fluorescence in the I-state, demonstrate that the I-state is stable, compact, misfolded, and on-pathway. These results illustrate how transient low-energy I-states can be characterized efficiently in complex refolding reactions using multiple Trp probes.
Collapse
|
31
|
Yoshinaga N, Yoshikawa K. Core-shell structures in single flexible-semiflexible block copolymers: Finding the free energy minimum for the folding transition. J Chem Phys 2007; 127:044902. [PMID: 17672720 DOI: 10.1063/1.2753838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the folding transition of a single diblock copolymer consisting of a semiflexible and a flexible block. We obtain a Saturn-shaped core-shell conformation in the folded state, in which the flexible block forms a core and the semiflexible block wraps around it. We demonstrate two distinctive features of the core-shell structures: (i) The kinetics of the folding transition in the copolymer are significantly more efficient than those of a semiflexible homopolymer. (ii) The core-shell structure does not depend on the transition pathway.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- Department of Physics, Graduate School of Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
32
|
Maisuradze GG, Leitner DM. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima. Proteins 2007; 67:569-78. [PMID: 17348026 DOI: 10.1002/prot.21344] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure.
Collapse
Affiliation(s)
- Gia G Maisuradze
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | | |
Collapse
|
33
|
Ma L, Ahmed Z, Mikhonin AV, Asher SA. UV resonance Raman measurements of poly-L-lysine's conformational energy landscapes: dependence on perchlorate concentration and temperature. J Phys Chem B 2007; 111:7675-80. [PMID: 17567063 DOI: 10.1021/jp0703758] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV resonance Raman spectroscopy has been used to determine the conformational energy landscape of poly-L-lysine (PLL) in the presence of NaClO4 as a function of temperature. At 1 degree C, in the presence of 0.83 M NaClO4, PLL shows an approximately 86% alpha-helix-like content, which contains alpha-helix and pi-bulge/helix conformations. The high alpha-helix-like content of PLL occurs because of charge screening due to strong ion-pair formation between ClO4- and the lysine side chain -NH3+. As the temperature increases from 1 to 60 degrees C, the alpha-helix and pi-bulge/helix conformations melt into extended conformations (PPII and 2.51-helix). We calculate the Psi Ramachandran angle distribution of the PLL peptide bonds from the UV Raman spectra which allows us to calculate the PLL (un)folding energy landscapes along the Psi reaction coordinate. We observe a basin in the Psi angle conformational space associated with alpha-helix and pi-bulge/helix conformations and another basin for the extended PPII and 2.51-helical conformations.
Collapse
Affiliation(s)
- Lu Ma
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
34
|
Abstract
An important puzzle in structural biology is the question of how proteins are able to fold so quickly into their unique native structures. There is much evidence that protein folding is hierarchic. In that case, folding routes are not linear, but have a tree structure. Trees are commonly used to represent the grammatical structure of natural language sentences, and chart parsing algorithms efficiently search the space of all possible trees for a given input string. Here we show that one such method, the CKY algorithm, can be useful both for providing novel insight into the physical protein folding process, and for computational protein structure prediction. As proof of concept, we apply this algorithm to the HP lattice model of proteins. Our algorithm identifies all direct folding route trees to the native state and allows us to construct a simple model of the folding process. Despite its simplicity, our model provides an account for the fact that folding rates depend only on the topology of the native state but not on sequence composition.
Collapse
Affiliation(s)
- Julia Hockenmaier
- Institute for Research in Cognitive Science and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104-6228, USA.
| | | | | |
Collapse
|
35
|
Huang F, Sato S, Sharpe TD, Ying L, Fersht AR. Distinguishing between cooperative and unimodal downhill protein folding. Proc Natl Acad Sci U S A 2007; 104:123-7. [PMID: 17200301 PMCID: PMC1765421 DOI: 10.1073/pnas.0609717104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conventional cooperative protein folding invokes discrete ensembles of native and denatured state structures in separate free-energy wells. Unimodal noncooperative ("downhill") folding, however, proposes an ensemble of states occupying a single free-energy well for proteins folding at >/=4 x 10(4) s(-1) at 298 K. It is difficult to falsify unimodal mechanisms for such fast folding proteins by standard equilibrium experiments because both cooperative and unimodal mechanisms can present the same time-averaged structural, spectroscopic, and thermodynamic properties when the time scale used for observation is longer than for equilibration. However, kinetics can provide the necessary evidence. Chevron plots with strongly sloping linear refolding arms are very difficult to explain by downhill folding and are a signature for cooperative folding via a transition state ensemble. The folding kinetics of the peripheral subunit binding domain POB and its mutants fit to strongly sloping chevrons at observed rate constants of >6 x 10(4) s(-1) in denaturant solution, extrapolating to 2 x 10(5) s(-1) in water. Protein A, which folds at 10(5) s(-1) at 298 K, also has a well-defined chevron. Single-molecule fluorescence energy transfer experiments on labeled Protein A in the presence of denaturant demonstrated directly bimodal distributions of native and denatured states.
Collapse
Affiliation(s)
- Fang Huang
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Satoshi Sato
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Timothy D. Sharpe
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Liming Ying
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom; and
- Biological Nanoscience Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alan R. Fersht
- *Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Rose GD, Fleming PJ, Banavar JR, Maritan A. A backbone-based theory of protein folding. Proc Natl Acad Sci U S A 2006; 103:16623-33. [PMID: 17075053 PMCID: PMC1636505 DOI: 10.1073/pnas.0606843103] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under physiological conditions, a protein undergoes a spontaneous disorder order transition called "folding." The protein polymer is highly flexible when unfolded but adopts its unique native, three-dimensional structure when folded. Current experimental knowledge comes primarily from thermodynamic measurements in solution or the structures of individual molecules, elucidated by either x-ray crystallography or NMR spectroscopy. From the former, we know the enthalpy, entropy, and free energy differences between the folded and unfolded forms of hundreds of proteins under a variety of solvent/cosolvent conditions. From the latter, we know the structures of approximately 35,000 proteins, which are built on scaffolds of hydrogen-bonded structural elements, alpha-helix and beta-sheet. Anfinsen showed that the amino acid sequence alone is sufficient to determine a protein's structure, but the molecular mechanism responsible for self-assembly remains an open question, probably the most fundamental open question in biochemistry. This perspective is a hybrid: partly review, partly proposal. First, we summarize key ideas regarding protein folding developed over the past half-century and culminating in the current mindset. In this view, the energetics of side-chain interactions dominate the folding process, driving the chain to self-organize under folding conditions. Next, having taken stock, we propose an alternative model that inverts the prevailing side-chain/backbone paradigm. Here, the energetics of backbone hydrogen bonds dominate the folding process, with preorganization in the unfolded state. Then, under folding conditions, the resultant fold is selected from a limited repertoire of structural possibilities, each corresponding to a distinct hydrogen-bonded arrangement of alpha-helices and/or strands of beta-sheet.
Collapse
Affiliation(s)
- George D Rose
- T. C. Jenkins Department of Biophysics,The Johns Hopkins University, Jenkins Hall, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.
Collapse
Affiliation(s)
- Zong Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
38
|
Ahmed Z, Asher SA. UV resonance Raman investigation of a 3(10)-helical peptide reveals a rough energy landscape. Biochemistry 2006; 45:9068-73. [PMID: 16866352 DOI: 10.1021/bi060858m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used UVRRS at 194 and 204 nm excitation to examine the backbone conformation of a 13-residue polypeptide (gp41(659-671)) that has been shown by NMR to predominantly fold into a 3(10)-helix. Examination of the conformation sensitive AmIII(3) region indicates the peptide has significant populations of beta-turn, PPII, 3(10)-helix, and pi-helix-like conformations but little alpha-helix. We estimate that at 1 degree C on average six of the 12 peptide bonds are in folded conformations (predominantly 3(10)- and pi-helix), while the other six are in unfolded (beta-turn/PPII) conformations. The folded and unfolded populations do not change significantly as the temperature is increased from 1 to 60 degrees C, suggesting a unique energy landscape where the folded and unfolded conformations are essentially degenerate in energy and exhibit identical temperature dependences.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
39
|
Lei H, Duan Y. The role of plastic beta-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein. J Chem Phys 2006; 121:12104-11. [PMID: 15634176 DOI: 10.1063/1.1822916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, the thermal stability of a designed alpha/beta protein FSD (full sequence design) was studied by explicit solvent simulations at three moderate temperatures, 273 K, 300 K, and 330 K. The average properties of the ten trajectories at each temperature were analyzed. The thermal unfolding, as judged by backbone root-mean-square deviation and percentage of native contacts, was displayed with increased sampling outside of the native basin as the temperature was raised. The positional fluctuation of the hairpin residues was significantly higher than that of the helix residues at all three temperatures. The hairpin segment displayed certain plasticity even at 273 K. Apart from the terminal residues, the highest fluctuation was shown in the turn residues 7-9. Secondary structure analysis manifested the structural heterogeneity of the hairpin segment. It was also revealed by the simulation that the hydrophobic core was vulnerable to thermal denaturation. Consistent with the experiment, the I7Y mutation in the double mutant FSD-EY (FSD with mutations Q1E and I7Y) dramatically increased the protein stability in the simulation, suggesting that the plasticity of the hairpin can be partially compensated by a stronger hydrophobic core. As for the unfolding pathway, the breathing of the hydrophobic core and the separation of the two secondary structure elements (alpha helix and beta hairpin) was the initiation step of the unfolding. The loss of global contacts from the separation further destabilized the hairpin structure and also led to the unwinding of the helix.
Collapse
Affiliation(s)
- Hongxing Lei
- Bioinformatics Program and Department of Applied Science, University of California, Davis, California 95616, USA
| | | |
Collapse
|
40
|
Elcock AH. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput Biol 2006; 2:e98. [PMID: 16789821 PMCID: PMC1523309 DOI: 10.1371/journal.pcbi.0020098.eor] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/14/2006] [Indexed: 11/19/2022] Open
Abstract
Although molecular simulation methods have yielded valuable insights into mechanistic aspects of protein refolding in vitro, they have up to now not been used to model the folding of proteins as they are actually synthesized by the ribosome. To address this issue, we report here simulation studies of three model proteins: chymotrypsin inhibitor 2 (CI2), barnase, and Semliki forest virus protein (SFVP), and directly compare their folding during ribosome-mediated synthesis with their refolding from random, denatured conformations. To calibrate the methodology, simulations are first compared with in vitro data on the folding stabilities of N-terminal fragments of CI2 and barnase; the simulations reproduce the fact that both the stability and thermal folding cooperativity increase as fragments increase in length. Coupled simulations of synthesis and folding for the same two proteins are then described, showing that both fold essentially post-translationally, with mechanisms effectively identical to those for refolding. In both cases, confinement of the nascent polypeptide chain within the ribosome tunnel does not appear to promote significant formation of native structure during synthesis; there are however clear indications that the formation of structure within the nascent chain is sensitive to location within the ribosome tunnel, being subject to both gain and loss as the chain lengthens. Interestingly, simulations in which CI2 is artificially stabilized show a pronounced tendency to become trapped within the tunnel in partially folded conformations: non-cooperative folding, therefore, appears in the simulations to exert a detrimental effect on the rate at which fully folded conformations are formed. Finally, simulations of the two-domain protease module of SFVP, which experimentally folds cotranslationally, indicate that for multi-domain proteins, ribosome-mediated folding may follow different pathways from those taken during refolding. Taken together, these studies provide a first step toward developing more realistic methods for simulating protein folding as it occurs in vivo.
Collapse
Affiliation(s)
- Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
41
|
Tollinger M, Neale C, Kay LE, Forman-Kay JD. Characterization of the hydrodynamic properties of the folding transition state of an SH3 domain by magnetization transfer NMR spectroscopy. Biochemistry 2006; 45:6434-45. [PMID: 16700554 DOI: 10.1021/bi060268o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein folding kinetic data have been obtained for the marginally stable N-terminal Src homology 3 domain of the Drosophila protein drk (drkN SH3) in an investigation of the hydrodynamic properties of its folding transition state. Due to the presence of NMR resonances of both folded and unfolded states at equilibrium, kinetic data can be derived from NMR magnetization transfer techniques under equilibrium conditions. Kinetic analysis as a function of urea (less than approximately 1 M) and glycerol enables determination of alpha values, measures of the energetic sensitivity of the transition state to the perturbation relative to the end states of the protein folding reaction (the folded and unfolded states). Both end states have previously been studied experimentally by NMR spectroscopic and other biophysical methods in great detail and under nondenaturing conditions. Combining these results with the kinetic folding data obtained here, we can characterize the folding transition state without requiring empirical models for the unfolded state structure. We are thus able to give a reliable measure of the solvent-accessible surface area of the transition state of the drkN SH3 domain (4730 +/- 360 A(2)) based on urea titration data. Glycerol titration data give similar results and additionally demonstrate that folding of this SH3 domain is dependent on solvent viscosity, which is indicative of at least partial hydration of the transition state. Because SH3 domains appear to fold by a common folding mechanism, the data presented here provide valuable insight into the transition states of the drkN and other SH3 domains.
Collapse
Affiliation(s)
- Martin Tollinger
- Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
42
|
Mittag T, Franzoni L, Cavazzini D, Schaffhausen B, Rossi GL, Günther UL. Retinol Modulates Site-Specific Mobility of Apo-Cellular Retinol-Binding Protein to Promote Ligand Binding. J Am Chem Soc 2006; 128:9844-8. [PMID: 16866541 DOI: 10.1021/ja0616128] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental question in protein science is how the inherent dynamics of a protein influence its function. If this function involves interactions with a ligand, the protein-ligand encounter has the potential to modulate the protein dynamics. This study reveals how site-specific mobility can be modulated by the ligand to facilitate high affinity binding. We have investigated the mechanism of retinol uptake by the cellular retinol-binding protein type I (CRBP) using line shape analysis of NMR signals. The highly similar structures of apo- and holo-CRBP exhibit closed conformations that seemingly offer no access to ligand, yet the protein binds retinol rapidly and with high affinity. NMR line shape analysis reveals how protein dynamics resolve this apparent paradox. An initial nonspecific encounter with the ligand induces the formation of long-lived conformers in the portal region of CRBP suggesting a mechanism how retinol accesses the cavity.
Collapse
|
43
|
Mi D, Liu GR, Wang JS, Li ZR. Relationships between the folding rate constant and the topological parameters of small two-state proteins based on general random walk model. J Theor Biol 2006; 241:152-7. [PMID: 16386276 DOI: 10.1016/j.jtbi.2005.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/27/2005] [Accepted: 11/10/2005] [Indexed: 11/19/2022]
Abstract
In this paper, we propose an analytically tractable model of protein folding based on one-dimensional general random walk. A second-order differential equation for the mean folding time of a single protein is constructed which can be used to derive the observed relationship between the folding rate constant and the number of native contacts. The parameters appearing in the model can be determined by fitting the theoretical prediction to the experimental result. In addition, taking into account the fact that the number of native contacts is almost proportional to the relative contact order, we can also explain the observed relationship between the folding rate constant and the relative contact order.
Collapse
Affiliation(s)
- Dong Mi
- Department of Physics, Dalian Maritime University, Dalian 116026, PR China.
| | | | | | | |
Collapse
|
44
|
Salinas RK, Diercks T, Kaptein R, Boelens R. Cooperative α-helix unfolding in a protein-DNA complex from hydrogen-deuterium exchange. Protein Sci 2006; 15:1752-9. [PMID: 16751603 PMCID: PMC2265102 DOI: 10.1110/ps.051938006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We present experimental evidence for a cooperative unfolding transition of an alpha-helix in the lac repressor headpiece bound to a symmetric variant of the lac operator, as inferred from hydrogen-deuterium (H-D) exchange experiments monitored by NMR spectroscopy. In the EX1 limit, observed exchange rates become pH-independent and exclusively sensitive to local structure fluctuations that expose the amide proton HN to exchange. Close to this regime, we measured decay rates of individual backbone HN signals in D2O, and of their mutual HN-HN NOE by time-resolved two-dimensional (2D) NMR experiments. The data revealed correlated exchange at the center of the lac headpiece recognition helix, Val20-Val23, and suggested that the correlation breaks down at Val24, at the C terminus of the helix. A lower degree of correlation was observed for the exchange of Val9 and Ala10 at the center of helix 1, while no correlation was observed for Val38 and Glu39 at the center of helix 3. We conclude that HN exchange in the recognition helix and, to some extent, in helix 1 is a cooperative event involving the unfolding of these helices, whereas the HN exchange in helix 3 is dominated by random local structure fluctuations.
Collapse
Affiliation(s)
- Roberto K Salinas
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
45
|
Tollinger M, Kloiber K, Agoston B, Dorigoni C, Lichtenecker R, Schmid W, Konrat R. An Isolated Helix Persists in a Sparsely Populated Form of KIX under Native Conditions. Biochemistry 2006; 45:8885-93. [PMID: 16846231 DOI: 10.1021/bi0607305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR relaxation dispersion techniques were used to investigate conformational exchange of the three-helix bundle protein KIX under native conditions. These experiments provide site-resolved kinetic information about microsecond-to-millisecond time scale motions along with structural (chemical shift) information without requiring a perturbation of the equilibrium. All kinetic data are consistent with an apparent two-state transition between natively folded KIX and a partially unfolded high-energy state that is populated to 3.0 +/- 0.2% at 27 degrees C. By combining (13)C- and (15)N-based experiments that probe specific structural aspects, we show that the sparsely populated high-energy state displays a strong conformational preference. An isolated secondary structural element, C-terminal helix alpha3, is highly populated, while the hydrophobic core of the domain and the remainder of the protein backbone, including helices alpha1 and alpha2, are disordered and devoid of specific interactions. This high-energy state presumably represents the equilibrium analogue of a folding intermediate that is transiently populated in stopped-flow kinetic experiments [Horng, J. C., Tracz, S. M., Lumb, K. J., and Raleigh, D. P. (2002) Biochemistry 44, 627-634].
Collapse
Affiliation(s)
- Martin Tollinger
- Department of Biomolecular Structural Chemistry, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chirico G, Cannone F, Diaspro A. Unfolding time distribution of GFP by single molecule fluorescence spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:663-74. [PMID: 16786346 DOI: 10.1007/s00249-006-0075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/05/2006] [Accepted: 05/18/2006] [Indexed: 11/27/2022]
Abstract
We have studied the unfolding of single molecules of GFP-mut2 mutant trapped in wet silica gels in a wide range of GuHCl concentration. After the addition of denaturant, the number of fluorescent molecules decreases with unfolding rates (of the order of 0.01 min(-1)) that are in very good agreement with bulk fluorescence and circular dichroism data. Unexpectedly, single molecule experiments show rare fluctuations in the number of fluorescent proteins at equilibrium. On the other hand, although a first approximate description of the number decays can be reasonably performed by single exponential functions, the distributions of the single molecule unfolding times show a maximum at times congruent with 50-100 min up to the denaturation midpoint concentration of [GuHCl] congruent with 2.5 M. A theoretical analysis of the distributions indicates that this feature is a fingerprint of the competition between unfolding and refolding processes when the protein is very far from the midpoint denaturant concentration.
Collapse
Affiliation(s)
- G Chirico
- Department of Physics, University of Milano Bicocca, Piazza della Scienza 3, Milano, Italy.
| | | | | |
Collapse
|
47
|
Elcock AH. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput Biol 2006. [PMID: 16789821 PMCID: PMC1523309 DOI: 10.1371/journal.pcbi.0020098] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although molecular simulation methods have yielded valuable insights into mechanistic aspects of protein refolding in vitro, they have up to now not been used to model the folding of proteins as they are actually synthesized by the ribosome. To address this issue, we report here simulation studies of three model proteins: chymotrypsin inhibitor 2 (CI2), barnase, and Semliki forest virus protein (SFVP), and directly compare their folding during ribosome-mediated synthesis with their refolding from random, denatured conformations. To calibrate the methodology, simulations are first compared with in vitro data on the folding stabilities of N-terminal fragments of CI2 and barnase; the simulations reproduce the fact that both the stability and thermal folding cooperativity increase as fragments increase in length. Coupled simulations of synthesis and folding for the same two proteins are then described, showing that both fold essentially post-translationally, with mechanisms effectively identical to those for refolding. In both cases, confinement of the nascent polypeptide chain within the ribosome tunnel does not appear to promote significant formation of native structure during synthesis; there are however clear indications that the formation of structure within the nascent chain is sensitive to location within the ribosome tunnel, being subject to both gain and loss as the chain lengthens. Interestingly, simulations in which CI2 is artificially stabilized show a pronounced tendency to become trapped within the tunnel in partially folded conformations: non-cooperative folding, therefore, appears in the simulations to exert a detrimental effect on the rate at which fully folded conformations are formed. Finally, simulations of the two-domain protease module of SFVP, which experimentally folds cotranslationally, indicate that for multi-domain proteins, ribosome-mediated folding may follow different pathways from those taken during refolding. Taken together, these studies provide a first step toward developing more realistic methods for simulating protein folding as it occurs in vivo.
Collapse
Affiliation(s)
- Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
48
|
Güner U, Arkun Y, Erman B. Optimum folding pathways of proteins: Their determination and properties. J Chem Phys 2006; 124:134911. [PMID: 16613481 DOI: 10.1063/1.2181976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a dynamic optimization technique for determining optimum folding pathways of proteins starting from different initial configurations. A coarse-grained Go model is used. Forces acting on each bead are (i) the friction force, (ii) forces from bond length constraints, (iii) excluded volume constraints, and (iv) attractive forces between residue pairs that are in contact in the native state. An objective function is defined as the total attractive energy between nonbonded residues, which are neighbors in the native state. The objective function is minimized over all feasible paths, satisfying bond length and excluded volume constraints. The optimization problem is nonconvex and contains a large number of constraints. An augmented Lagrangian method with a penalty barrier function was used to solve the problem. The method is applied to a 36-residue protein, chicken villin headpiece. Sequences of events during folding of the protein are determined for various pathways and analyzed. The relative time scales are compared and scaled according to experimentally measured events. Formation times of the helices, turn, and the loop agree with experimental data. We obtain the overall folding time of the protein in the range of 600 ns-1.2 micros that is smaller than the experimental result of 4-5 micros, showing that the optimal folding times that we obtain may be possible lower bounds. Time dependent variables during folding and energies associated with short- and long-range interactions between secondary structures are analyzed in modal space using Karhunen-Loeve expansion.
Collapse
Affiliation(s)
- Uğur Güner
- College of Engineering, Koc University, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | | | | |
Collapse
|
49
|
Maisuradze GG, Leitner DM. Principal component analysis of fast-folding λ-repressor mutants. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Balakrishnan G, Hu Y, Spiro TG. Temperature-jump apparatus with Raman detection based on a solid-state tunable (1.80-2.05 microm) kHz optical parametric oscillator laser. APPLIED SPECTROSCOPY 2006; 60:347-51. [PMID: 16613628 DOI: 10.1366/000370206776593799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The operating characteristics of a pulsed (10 ns) tunable near-infrared (NIR) laser source are described for temperature-jump (T-jump) applications. A Q-switched Nd:YLF laser (approximately 10 ns pulses) with a 1 kHz repetition rate is used to pump a potassium titanyl arsenate (KTA) crystal-based optical parametric oscillator (OPO), producing approximately 1 mJ NIR pulses that are tunable (1.80-2.05 microm) across the 1.9 microm vibrational overtone band of water. This T-jump source has been coupled to a deep ultraviolet (UV) probe laser for Raman studies of protein dynamics. T-jumps of up to 30 degrees C, as measured via the O-H stretching Raman band of water, are readily achieved. Application to cytochrome c unfolding is demonstrated.
Collapse
|