1
|
Mackels L, Liu X, Bonne G, Servais L. TOR1AIP1-Associated Nuclear Envelopathies. Int J Mol Sci 2023; 24:ijms24086911. [PMID: 37108075 PMCID: PMC10138496 DOI: 10.3390/ijms24086911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- Adult Neurology Department, Citadelle Hospital, 4000 Liège, Belgium
| | - Xincheng Liu
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Gisèle Bonne
- Sorbonne University, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Laurent Servais
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Knockdown of Lamin B1 and the Corresponding Lamin B Receptor Leads to Changes in Heterochromatin State and Senescence Induction in Malignant Melanoma. Cells 2022; 11:cells11142154. [PMID: 35883595 PMCID: PMC9321645 DOI: 10.3390/cells11142154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.
Collapse
|
3
|
Holzer G, De Magistris P, Gramminger C, Sachdev R, Magalska A, Schooley A, Scheufen A, Lennartz B, Tatarek‐Nossol M, Lue H, Linder MI, Kutay U, Preisinger C, Moreno‐Andres D, Antonin W. The nucleoporin Nup50 activates the Ran guanine nucleotide exchange factor RCC1 to promote NPC assembly at the end of mitosis. EMBO J 2021; 40:e108788. [PMID: 34725842 PMCID: PMC8634129 DOI: 10.15252/embj.2021108788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/β, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Paola De Magistris
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- Present address:
Department of BionanoscienceKavli Institute of NanoscienceDelftthe Netherlands
| | | | - Ruchika Sachdev
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Adriana Magalska
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Allana Schooley
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Birgitt Lennartz
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Marianna Tatarek‐Nossol
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Monika I Linder
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Department of PediatricsDr. von Hauner Children's Hospital and Gene CenterUniversity Hospital, LMUMunichGermany
| | - Ulrike Kutay
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Christian Preisinger
- Proteomics FacilityInterdisciplinary Centre for Clinical Research (IZKF)Medical SchoolRWTH Aachen UniversityAachenGermany
| | - Daniel Moreno‐Andres
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Wong X, Cutler JA, Hoskins VE, Gordon M, Madugundu AK, Pandey A, Reddy KL. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci Alliance 2021; 4:e202000774. [PMID: 33758005 PMCID: PMC8008952 DOI: 10.26508/lsa.202000774] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2β to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Immunos, Singapore
| | - Jevon A Cutler
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria E Hoskins
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Molly Gordon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
VPS72/YL1-Mediated H2A.Z Deposition Is Required for Nuclear Reassembly after Mitosis. Cells 2020; 9:cells9071702. [PMID: 32708675 PMCID: PMC7408173 DOI: 10.3390/cells9071702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.
Collapse
|
6
|
Finol HJ, Garcia-Lunardi E, González R, Girón ME, Uzcátegui NL, Rodríguez-Acosta A. Qualitative and Quantitative Study of the Changes in the Ultrastructure of Mammalian Adrenal Cortex Caused by the Venezuelan Tigra Mariposa ( Bothrops venezuelensis) Snake Venom. J Microsc Ultrastruct 2020; 8:104-114. [PMID: 33282685 PMCID: PMC7703017 DOI: 10.4103/jmau.jmau_49_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/09/2020] [Indexed: 12/03/2022] Open
Abstract
The damage of the adrenal gland by snake venoms needs to be clarified. Lethality (LD50) of Bothrops venezuelensis (Bv) venom was established by intraperitoneally mice injections. Preparation of specimens for transmission electron microscopy samples from cortex adrenal gland biopsies at 3, 6, and 24 h was processed. The quantitative description by the principal component analysis (PCA) of the adrenal gland was as follows: thickening of the capillary endothelium, area of the capillary lumen, cell nucleus area, enlargement of the perinuclear space, number of mitochondria, area of the mitochondria, number of mitochondrial cristae, number of cristae per mitochondrial unit, and tubular diameter of the smooth endoplasmic reticulum (SER). Sections of the adrenal cortex, after 3 h postinjection with Bv venom showed in the cortical cells: mitochondria with tubular cristae and slightly swollen SER cisternae, nucleus with variable heterochromatin content, irregular edges, and swollen nuclear envelope. After 6 h, cells with swollen nucleus envelope, electron dense lipids and mitochondria with loss of their cristae were observed. Myelin figures, close to the microvilli of the cortical cell, multivesicular bodies, swollen profiles of the SER, and electron dense lipid drops were noticed. After 24 h, thickening of the endothelial wall, fenestrae and projections into the capillary lumen, loss of the mitochondrial cristae, destruction of the capillary and the plasma membrane of the cortical cell, multivesicular body, SER loss, and an enlargement of the perinuclear space were detected. In the quantitative PCA, there were significant changes after the venom treatments.
Collapse
Affiliation(s)
- Héctor J Finol
- Microscopy Electronic Centre, Faculty of Sciences, Universidad Central De Venezuela, Caracas, Venezuela
| | - Estefanie Garcia-Lunardi
- Microscopy Electronic Centre, Faculty of Sciences, Universidad Central De Venezuela, Caracas, Venezuela
| | - Roschman González
- Microscopy Electronic Centre, Faculty of Sciences, Universidad Central De Venezuela, Caracas, Venezuela
| | - Maria E Girón
- Anatomical Institute, Immunochemistry and Ultrastructure Laboratory, Universidad Central De Venezuela, Caracas, Venezuela
| | - Nestor L Uzcátegui
- Anatomical Institute, Immunochemistry and Ultrastructure Laboratory, Universidad Central De Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Anatomical Institute, Immunochemistry and Ultrastructure Laboratory, Universidad Central De Venezuela, Caracas, Venezuela
| |
Collapse
|
7
|
Biallelic Variants in the Nuclear Pore Complex Protein NUP93 Are Associated with Non-progressive Congenital Ataxia. THE CEREBELLUM 2019; 18:422-432. [PMID: 30741391 DOI: 10.1007/s12311-019-1010-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nuclear pore complexes (NPCs) are the gateways of the nuclear envelope mediating transport between cytoplasm and nucleus. They form huge complexes of 125 MDa in vertebrates and consist of about 30 different nucleoporins present in multiple copies in each complex. Here, we describe pathogenic variants in the nucleoporin 93 (NUP93) associated with an autosomal recessive form of congenital ataxia. Two rare compound heterozygous variants of NUP93 were identified by whole exome sequencing in two brothers with isolated cerebellar atrophy: one missense variant (p.R537W) results in a protein which does not localize to NPCs and cannot functionally replace the wild type protein, whereas the variant (p.F699L) apparently supports NPC assembly. In addition to its recently described pathological role in steroid-resistant nephrotic syndrome, our work identifies NUP93 as a candidate gene for non-progressive congenital ataxia.
Collapse
|
8
|
Kalsbeek D, Golsteyn RM. G2/M-Phase Checkpoint Adaptation and Micronuclei Formation as Mechanisms That Contribute to Genomic Instability in Human Cells. Int J Mol Sci 2017; 18:E2344. [PMID: 29113112 PMCID: PMC5713313 DOI: 10.3390/ijms18112344] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/30/2023] Open
Abstract
One of the most common characteristics of cancer cells is genomic instability. Recent research has revealed that G2/M-phase checkpoint adaptation-entering mitosis with damaged DNA-contributes to genomic changes in experimental models. When cancer cells are treated with pharmacological concentrations of genotoxic agents, they undergo checkpoint adaptation; however, a small number of cells are able to survive and accumulate micronuclei. These micronuclei harbour damaged DNA, and are able to replicate and reincorporate their DNA into the main nucleus. Micronuclei are susceptible to chromothripsis, which is a phenomenon characterised by extensively rearranged chromosomes that reassemble from pulverized chromosomes in one cellular event. These processes contribute to genomic instability in cancer cells that survive a genotoxic anti-cancer treatment. This review provides insight into checkpoint adaptation and its connection to micronuclei and possibly chromothripsis. Knowledge about these mechanisms is needed to improve the poor cancer treatment outcomes that result from genomic instability.
Collapse
Affiliation(s)
- Danî Kalsbeek
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
9
|
Affiliation(s)
- Douglas J. Richmond
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
| | - Mikkel‐Holger S. Sinding
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
- Natural History Museum University of Oslo P.O. Box 1172 Blindern NO‐0318 Oslo Norway
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
- Trace and Environmental DNA Laboratory Department of Environment and Agriculture Curtin University Perth WA 6102 Australia
- NTNU University Museum NO‐7491 Trondheim Norway
| |
Collapse
|
10
|
Arai R, En A, Ukekawa R, Miki K, Fujii M, Ayusawa D. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells. Biochem Biophys Res Commun 2016; 473:1078-1083. [PMID: 27059139 DOI: 10.1016/j.bbrc.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Collapse
Affiliation(s)
- Rumi Arai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Ryo Ukekawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048, Japan
| |
Collapse
|
11
|
Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 2016; 48:457-65. [PMID: 26878725 PMCID: PMC4811732 DOI: 10.1038/ng.3512] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/22/2016] [Indexed: 12/26/2022]
Abstract
Nucleoporins are essential components of the nuclear pore complex (NPC). Only a few diseases have been attributed to NPC dysfunction. Steroid-resistant nephrotic syndrome (SRNS), a frequent cause of chronic kidney disease, is caused by dysfunction of glomerular podocytes. Here we identify in eight families with SRNS mutations in NUP93, its interaction partner NUP205 or XPO5 (encoding exportin 5) as hitherto unrecognized monogenic causes of SRNS. NUP93 mutations caused disrupted NPC assembly. NUP93 knockdown reduced the presence of NUP205 in the NPC, and, reciprocally, a NUP205 alteration abrogated NUP93 interaction. We demonstrate that NUP93 and exportin 5 interact with the signaling protein SMAD4 and that NUP93 mutations abrogated interaction with SMAD4. Notably, NUP93 mutations interfered with BMP7-induced SMAD transcriptional reporter activity. We hereby demonstrate that mutations of NUP genes cause a distinct renal disease and identify aberrant SMAD signaling as a new disease mechanism of SRNS, opening a potential new avenue for treatment.
Collapse
|
12
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
13
|
Schellhaus AK, Magalska A, Schooley A, Antonin W. A Cell Free Assay to Study Chromatin Decondensation at the End of Mitosis. J Vis Exp 2015:e53407. [PMID: 26710245 DOI: 10.3791/53407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During the vertebrate cell cycle chromatin undergoes extensive structural and functional changes. Upon mitotic entry, it massively condenses into rod shaped chromosomes which are moved individually by the mitotic spindle apparatus. Mitotic chromatin condensation yields chromosomes compacted fifty-fold denser as in interphase. During exit from mitosis, chromosomes have to re-establish their functional interphase state, which is enclosed by a nuclear envelope and is competent for replication and transcription. The decondensation process is morphologically well described, but in molecular terms poorly understood: We lack knowledge about the underlying molecular events and to a large extent the factors involved as well as their regulation. We describe here a cell-free system that faithfully recapitulates chromatin decondensation in vitro, based on mitotic chromatin clusters purified from synchronized HeLa cells and X. laevis egg extract. Our cell-free system provides an important tool for further molecular characterization of chromatin decondensation and its co-ordination with processes simultaneously occurring during mitotic exit such as nuclear envelope and pore complex re-assembly.
Collapse
Affiliation(s)
| | - Adriana Magalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences
| | | | | |
Collapse
|
14
|
Capo-chichi CD, Aguida B, Chabi NW, Cai QK, Offrin G, Agossou VK, Sanni A, Xu XX. Lamin A/C deficiency is an independent risk factor for cervical cancer. Cell Oncol (Dordr) 2015; 39:59-68. [PMID: 26537870 DOI: 10.1007/s13402-015-0252-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In the past, cervical cancer has been linked to Human Papilloma Virus (HPV) infection. Previously, we found that pre-neoplastic breast and ovarian lesions may be associated with lamin A/C deficiency, resulting in abnormal nuclear morphologies and chromosomal instability. Ultimately, these phenomena are thought to lead to cancer. Here, we assessed lamin A/C deficiency as an indicator for the risk to develop cervical cancer. METHODS The expression of lamin A/C was assessed by Western blotting in cervical uterine smears (CUS) of 76 adult women from Benin concomitant with nuclear morphology assessment and HPV genotyping using microscopy and PCR-based assays, respectively. In vitro analyses were performed to uncover the mechanism underlying lamin A/C expression alterations observed in vivo. The presence of cervical intra-epithelial neoplasia (CIN) was assessed by colposcopy. RESULTS Normal lamin A/C expression (group A) was observed in 39% of the CUS, weak lamin A/C expression (group B) was observed in 28% of the CUS and no lamin A/C expression (group C) was observed in 33% of the CUS tested. Infection with oncogenic HPV was found to be significantly higher in group C (36%) than in groups A (17%) and B (14%). Two years after our first assessment, CIN was observed in 20% of the women in group C. The in vitro application of either a histone deacetylase inhibitor (trichostatin) or a protein kinase inhibitor (staurosporine) was found to restore lamin A/C expression in cervical cancer-derived cells. CONCLUSION Lamin A/C deficiency may serve as an independent risk factor for CIN development and as an indicator for preventive therapy in cervical cancer.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin. .,National University Hospital (CNHU), Cotonou, BENIN. .,Unit of Biochemistry and Molecular Biology (UBBM), Section of Molecular Biomarkers in Cancer and Nutrition (BMCN), Faculty of Sciences and Technology (FAST), Institute of Biomedical Sciences and Applications (ISBA), University Abomey-Calavi (UAC), 04BP488, Cotonou, Benin.
| | - Blanche Aguida
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Nicodème W Chabi
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Qi K Cai
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | | - Ambaliou Sanni
- Faculty of Sciences and Technology (FAST)/Institute of Biomedical Sciences and Applications (ISBA), University of Abomey-Calavi (UAC), Abomey Calavi, Benin.
| | - Xiang-Xi Xu
- Sylvester Cancer Center/Miller Medical School of Medicine, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
15
|
Expression of nuclear membrane proteins in normal, hyperplastic, and neoplastic thyroid epithelial cells. Virchows Arch 2015; 467:427-36. [DOI: 10.1007/s00428-015-1816-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/30/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
16
|
Schooley A, Moreno-Andrés D, De Magistris P, Vollmer B, Antonin W. The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis. J Cell Sci 2015. [PMID: 26224877 DOI: 10.1242/jcs.173013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The metazoan nucleus breaks down and reassembles during each cell division. Upon mitotic exit, the successful reestablishment of an interphase nucleus requires the coordinated reorganization of chromatin and formation of a functional nuclear envelope. Here, we report that the histone demethylase LSD1 (also known as KDM1A) plays a crucial role in nuclear assembly at the end of mitosis. Downregulation of LSD1 in cells extends telophase and impairs nuclear pore complex assembly. In vitro, LSD1 demethylase activity is required for the recruitment of MEL28 (also known as ELYS and AHCTF1) and nuclear envelope precursor vesicles to chromatin, crucial steps in nuclear reassembly. Accordingly, the formation of a closed nuclear envelope and nuclear pore complex assembly are impaired upon depletion of LSD1 or inhibition of its activity. Our results identify histone demethylation by LSD1 as a new regulatory mechanism linking the chromatin state and nuclear envelope formation at the end of mitosis.
Collapse
Affiliation(s)
- Allana Schooley
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| | - Daniel Moreno-Andrés
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| | - Paola De Magistris
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| | - Benjamin Vollmer
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstraße 39, Tübingen 72076, Germany
| |
Collapse
|
17
|
Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly. Dev Cell 2015; 33:717-28. [DOI: 10.1016/j.devcel.2015.04.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
|
18
|
Vollmer B, Antonin W. The diverse roles of the Nup93/Nic96 complex proteins - structural scaffolds of the nuclear pore complex with additional cellular functions. Biol Chem 2014; 395:515-28. [PMID: 24572986 DOI: 10.1515/hsz-2013-0285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/22/2014] [Indexed: 11/15/2022]
Abstract
Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.
Collapse
|
19
|
Magalska A, Schellhaus A, Moreno-Andrés D, Zanini F, Schooley A, Sachdev R, Schwarz H, Madlung J, Antonin W. RuvB-like ATPases Function in Chromatin Decondensation at the End of Mitosis. Dev Cell 2014; 31:305-318. [DOI: 10.1016/j.devcel.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
20
|
Rajcevic U, Knol JC, Piersma S, Bougnaud S, Fack F, Sundlisaeter E, Søndenaa K, Myklebust R, Pham TV, Niclou SP, Jiménez CR. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Sci 2014; 12:39. [PMID: 25075203 PMCID: PMC4114130 DOI: 10.1186/1477-5956-12-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/09/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. RESULTS Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. CONCLUSIONS Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal and stem-like cells. This 3D tumor model in which tumor heterogeneity is preserved may represent an advantageous model system to investigate novel therapeutic approaches.
Collapse
Affiliation(s)
- Uros Rajcevic
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg ; Department of Research and Development, Blood Transfusion Center of Slovenia, Ljubljana, Slovenia ; Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sander Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sébastien Bougnaud
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | | | - Karl Søndenaa
- Department of Surgery, Haraldsplass Deaconal Hospital, University of Bergen, Bergen, Norway
| | | | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
21
|
Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J Cell Sci 2013; 127:908-21. [PMID: 24363447 DOI: 10.1242/jcs.141739] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) are the gateways for nucleocytoplasmic exchange. The ordered assembly of these huge complexes from several hundred individual components into an intricate protein interaction network which deforms the two membranes of the nuclear envelope into a pore is only rudimentarily understood. Here, we show that the interaction between Nup53 and the integral pore membrane protein Ndc1 is essential for vertebrate NPC assembly. The Ndc1 binding site on Nup53 overlaps with a region that induces membrane bending and is specifically required to modulate this activity, suggesting that the membrane-deforming capability of Nup53 is adjusted during the NPC assembly process. We further demonstrate that the interaction of Nup53 and Nup155 has a crucial role in NPC formation as the main determinant of recruitment of Nup155 to the assembling pore. Overall, our results pinpoint the diversity of interaction modes accomplished by Nup53, highlighting this protein as an essential link between the pore membrane and the NPC, and as a crucial factor in the formation of the pore membrane.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany
| | | | | |
Collapse
|
22
|
Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 2013; 154:47-60. [PMID: 23827674 DOI: 10.1016/j.cell.2013.06.007] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/24/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
During mitotic exit, missegregated chromosomes can recruit their own nuclear envelope (NE) to form micronuclei (MN). MN have reduced functioning compared to primary nuclei in the same cell, although the two compartments appear to be structurally comparable. Here we show that over 60% of MN undergo an irreversible loss of compartmentalization during interphase due to NE collapse. This disruption of the MN, which is induced by defects in nuclear lamina assembly, drastically reduces nuclear functions and can trigger massive DNA damage. MN disruption is associated with chromatin compaction and invasion of endoplasmic reticulum (ER) tubules into the chromatin. We identified disrupted MN in both major subtypes of human non-small-cell lung cancer, suggesting that disrupted MN could be a useful objective biomarker for genomic instability in solid tumors. Our study shows that NE collapse is a key event underlying MN dysfunction and establishes a link between aberrant NE organization and aneuploidy.
Collapse
Affiliation(s)
- Emily M Hatch
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
23
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
24
|
Gaveglio VL, Pasquaré SJ, Giusto NM. Phosphatidic acid metabolism in rat liver cell nuclei. FEBS Lett 2013; 587:950-6. [DOI: 10.1016/j.febslet.2013.01.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/22/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
|
25
|
Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β. Cell Res 2012; 22:1562-75. [PMID: 22847741 DOI: 10.1038/cr.2012.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
Collapse
|
26
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
27
|
Boruc J, Zhou X, Meier I. Dynamics of the plant nuclear envelope and nuclear pore. PLANT PHYSIOLOGY 2012; 158:78-86. [PMID: 21949214 PMCID: PMC3252082 DOI: 10.1104/pp.111.185256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
28
|
Symens N, Walczak R, Demeester J, Mattaj I, De Smedt SC, Remaut K. Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol Pharm 2011; 8:1757-66. [PMID: 21859089 DOI: 10.1021/mp200120v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear membrane is one of the major cellular barriers in the delivery of plasmid DNA (pDNA). Cell division has a positive influence on the expression efficiency since, at the end of mitosis, pDNA or pDNA containing complexes near the chromatin are probably included by a random process in the nuclei of the daughter cells. However, very little is known about the nuclear inclusion of nanoparticles during cell division. Using the Xenopus nuclear envelope reassembly (XNER) assay, we found that the nuclear enclosure of nanoparticles was dependent on size (with 100 and 200 nm particles being better included than the 500 nm ones) and charge (with positively charged particles being better included than negatively charged or polyethyleneglycolated (PEGylated) ones) of the beads. Also, coupling chromatin-targeting peptides to the polystyrene beads or pDNA complexes improved their inclusion by 2- to 3-fold. Upon microinjection in living HeLa cells, however, nanoparticles were never observed in the nuclei of cells postdivision but accumulated in a specific perinuclear region, which was identified as the lysosomal compartment. This indicates that nanoparticles can end up in the lysosomes even when they were not delivered through endocytosis. To elucidate if the chromatin binding peptides also have potential in living cells, this additional barrier first has to be tackled, since it prevents free particles from being present near the chromatin at the moment of cell division.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins. J Biosci 2011; 36:471-9. [DOI: 10.1007/s12038-011-9085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73. [DOI: 10.1016/j.tcb.2011.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
31
|
Gaveglio VL, Pasquaré SJ, Giusto NM. Metabolic pathways for the degradation of phosphatidic acid in isolated nuclei from cerebellar cells. Arch Biochem Biophys 2011; 507:271-80. [PMID: 21216221 DOI: 10.1016/j.abb.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
Abstract
The aim of the present research was to analyse the pathways for phosphatidic acid metabolism in purified nuclei from cerebellar cells. Lipid phosphate phosphatase and diacylglyceride lipase activities were detected in nuclei from cerebellar cells. It was observed that DAGL activity makes up 50% of LPP activity and that PtdOH can also be metabolised to lysophosphatidic acid. With a nuclear protein content of approximately 40 μg, the production of diacylglycerol and monoacylglycerol was linear for 30 min and 5 min, respectively, whereas it increased with PtdOH concentrations of up to 250 μM. LysoPtdOH, sphingosine 1-phosphate and ceramide 1-phosphate, which are alternative substrates for LPP, significantly reduced DAG production from PA. DAG and MAG production increased in the presence of Triton X-100 (1 mM) whereas no modifications were observed in the presence of ionic detergent sodium deoxycholate. Ca²+ and Mg²+ stimulated MAG production without affecting DAG formation whereas fluoride and vanadate inhibited the generation of both products. Specific PtdOH-phospholipase A1 and PtdOH-phospholipase A2 were also detected in nuclei. Our findings constitute the first reported evidence of active PtdOH metabolism involving LPP, DAGL and PtdOH-selective PLA activities in purified nuclei prepared from cerebellar cells.
Collapse
Affiliation(s)
- Virginia L Gaveglio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C.C. 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|
32
|
Lu X, Shi Y, Lu Q, Ma Y, Luo J, Wang Q, Ji J, Jiang Q, Zhang C. Requirement for lamin B receptor and its regulation by importin {beta} and phosphorylation in nuclear envelope assembly during mitotic exit. J Biol Chem 2010; 285:33281-33293. [PMID: 20576617 PMCID: PMC2963407 DOI: 10.1074/jbc.m110.102368] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/24/2010] [Indexed: 11/06/2022] Open
Abstract
Lamin B receptor (LBR), a chromatin and lamin B-binding protein in the inner nuclear membrane, has been proposed to target the membrane precursor vesicles to chromatin mediated by importin β during the nuclear envelope (NE) assembly. However, the mechanisms for the binding of LBR with importin β and the membrane targeting by LBR in NE assembly remain largely unknown. In this report, we show that the amino acids (aa) 69-90 of LBR sequences are required to bind with importin β at aa 45-462, and the binding is essential for the NE membrane precursor vesicle targeting to the chromatin during the NE assembly at the end of mitosis. We also show that this binding is cell cycle-regulated and dependent on the phosphorylation of LBR Ser-71 by p34(cdc2) kinase. RNAi knockdown of LBR causes the NE assembly failure and abnormal chromatin decondensation of the daughter cell nuclei, leading to the daughter cell death at early G(1) phase by apoptosis. Perturbation of the interaction of LBR with importin β by deleting the LBR N-terminal spanning region or aa 69-73 also induces the NE assembly failure, the abnormal chromatin decondensation, and the daughter cell death. The first transmembrane domain of LBR promotes the NE production and expansion, because overexpressing this domain is sufficient to induce membrane overproduction of the NE. Thus, these results demonstrate that LBR targets the membrane precursor vesicles to chromatin by interacting with importin β in a LBR phosphorylation-dependent manner during the NE assembly at the end of mitosis and that the first transmembrane domain of LBR promotes the LBR-bearing membrane production and the NE expansion in interphase.
Collapse
Affiliation(s)
- Xuelong Lu
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Yang Shi
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Quanlong Lu
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Yan Ma
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Jia Luo
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Qingsong Wang
- State Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China
| | - Chuanmao Zhang
- From the The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering, Beijing 100871, China.
| |
Collapse
|
33
|
Abstract
The nuclear envelope (NE) is a highly regulated membrane barrier that separates the nucleus from the cytoplasm in eukaryotic cells. It contains a large number of different proteins that have been implicated in chromatin organization and gene regulation. Although the nuclear membrane enables complex levels of gene expression, it also poses a challenge when it comes to cell division. To allow access of the mitotic spindle to chromatin, the nucleus of metazoans must completely disassemble during mitosis, generating the need to re-establish the nuclear compartment at the end of each cell division. Here, I summarize our current understanding of the dynamic remodeling of the NE during the cell cycle.
Collapse
Affiliation(s)
- Martin W Hetzer
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA.
| |
Collapse
|
34
|
Kim OMO, Elliott D. Elective Caesarean Section for a Woman with Emery-Dreifuss Muscular Dystrophy. Anaesth Intensive Care 2010; 38:744-7. [DOI: 10.1177/0310057x1003800419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Emery-Dreifuss muscular dystrophy is a rare form of muscular dystrophy involving both cardiac and skeletal muscles. Cardiac involvement frequently leads to dilated cardiomyopathy, arrhythmias and may precipitate sudden cardiac death. Skeletal involvement is characterised by early contractures and muscle weakness in the humeroperoneal distribution. We describe the anaesthetic management of a 29-year-old patient with Emery-Dreifuss muscular dystrophy presenting for elective caesarean section and discuss the disorder and its potential anaesthetic implications.
Collapse
Affiliation(s)
- O. M. O. Kim
- Department of Anaesthesia, Westmead Hospital, Sydney, New South Wales, Australia
| | - D. Elliott
- Department of Anaesthesia, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Dahl KN, Kalinowski A, Pekkan K. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics. Microcirculation 2010; 17:179-91. [PMID: 20374482 DOI: 10.1111/j.1549-8719.2009.00016.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, related to Hutchinson-Gilford progeria syndrome, is reviewed specifically as the mutation results in altered nuclear structure and stiffer nuclei; animal models also suggest significantly altered vascular structure. Nuclear and cellular deformation of endothelial cells in response to shear stress provides partial understanding of possible mechanical regulation in the microcirculation. Increasing sophistication of fluid flow simulations inside the vessel is also an emerging area relevant to the microcirculation as visualization in situ is difficult. This integrated approach to study--including medicine, molecular and cell biology, biophysics and engineering--provides a unique understanding of multi-scale interactions in the microcirculation.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
36
|
Role of the endoplasmic reticulum chaperone BiP, SUN domain proteins, and dynein in altering nuclear morphology during human cytomegalovirus infection. J Virol 2010; 84:7005-17. [PMID: 20484513 DOI: 10.1128/jvi.00719-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The process of assembly and egress of human cytomegalovirus (HCMV) virions requires significant morphological alterations of the nuclear and cytoplasmic architecture. In the studies presented we show that the nuclear periphery is dramatically altered, especially near the cytoplasmic assembly compartment, where the nuclear lamina is specifically rearranged, the outer nuclear membrane is altered, and the nucleus becomes permeable to large molecules. In addition, the tethering of the inner and outer nuclear membranes is lost during infection due to a decrease in levels of the SUN domain proteins. We previously demonstrated that the endoplasmic reticulum protein BiP functions as a component of the assembly compartment and disruption of BiP causes the loss of assembly compartment integrity. In this study we show that the depletion of BiP, and the loss of assembly compartment integrity, results in the loss of virally induced lamina rearrangement and morphology of the nucleus that is characteristic of HCMV infection. BiP functions in lamina rearrangement through its ability to affect lamin phosphorylation. Depletion of BiP and disruption of the assembly compartment result in the loss of lamin phosphorylation. The dependency of lamin phosphorylation on BiP correlates with an interaction between BiP and UL50. Finally, we confirm previous data (S. V. Indran, M. E. Ballestas, and W. J. Britt, J. Virol. 84:3162-3177, 2010) suggesting an involvement of dynein in assembly compartment formation and extend this observation by showing that when dynein is inhibited, the nuclear morphology characteristic of an HCMV infection is lost. Our data suggest a highly integrated assembly-egress continuum.
Collapse
|
37
|
Iwatsuki H, Suda M. Seven kinds of intermediate filament networks in the cytoplasm of polarized cells: structure and function. Acta Histochem Cytochem 2010; 43:19-31. [PMID: 20514289 PMCID: PMC2875862 DOI: 10.1267/ahc.10009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/15/2010] [Indexed: 02/01/2023] Open
Abstract
Intermediate filaments (IFs) are involved in many important physiological functions, such as the distribution of organelles, signal transduction, cell polarity and gene regulation. However, little information exists on the structure of the IF networks performing these functions. We have clarified the existence of seven kinds of IF networks in the cytoplasm of diverse polarized cells: an apex network just under the terminal web, a peripheral network lying just beneath the cell membrane, a granule-associated network surrounding a mass of secretory granules, a Golgi-associated network surrounding the Golgi apparatus, a radial network locating from the perinuclear region to the specific area of the cell membrane, a juxtanuclear network surrounding the nucleus, and an entire cytoplasmic network. In this review, we describe these seven kinds of IF networks and discuss their biological roles.
Collapse
Affiliation(s)
| | - Masumi Suda
- Department of Anatomy, Kawasaki Medical School
| |
Collapse
|
38
|
Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. EUKARYOTIC CELL 2010; 9:1171-83. [PMID: 20207852 DOI: 10.1128/ec.00329-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurospora crassa macroconidia form germ tubes that are involved in colony establishment and conidial anastomosis tubes (CATs) that fuse to form interconnected networks of conidial germlings. Nuclear and cytoskeletal behaviors were analyzed in macroconidia, germ tubes, and CATs in strains that expressed fluorescently labeled proteins. Heterokaryons formed by CAT fusion provided a rapid method for the imaging of multiple labeled fusion proteins and minimized the potential risk of overexpression artifacts. Mitosis occurred more slowly in nongerminated macroconidia (1.0 to 1.5 h) than in germ tubes (16 to 20 min). The nucleoporin SON-1 was not released from the nuclear envelope during mitosis, which suggests that N. crassa exhibits a form of "closed mitosis." During CAT homing, nuclei did not enter CATs, and mitosis was arrested. Benomyl treatment showed that CAT induction, homing, fusion, as well as nuclear migration through fused CATs do not require microtubules or mitosis. Three ropy mutants (ro-1, ro-3, and ro-11) defective in the dynein/dynactin microtubule motor were impaired in nuclear positioning, but nuclei still migrated through fused CATs. Latrunculin B treatment, imaging of F-actin in living cells using Lifeact-red fluorescent protein (RFP), and analysis of mutants defective in the Arp2/3 complex demonstrated that actin plays important roles in CAT fusion.
Collapse
|
39
|
Hancock CN, Zhang F, Wessler SR. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mob DNA 2010; 1:5. [PMID: 20226077 PMCID: PMC2836001 DOI: 10.1186/1759-8753-1-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 02/01/2010] [Indexed: 12/25/2022] Open
Abstract
Background PIF/Harbinger is the most recently discovered DNA transposon superfamily and is now known to populate genomes from fungi to plants to animals. Mobilization of superfamily members requires two separate element-encoded proteins (ORF1 and TPase). Members of this superfamily also mobilize Tourist-like miniature inverted repeat transposable elements (MITEs), which are the most abundant transposable elements associated with the genes of plants, especially the cereal grasses. The phylogenetic analysis of many plant genomes indicates that MITEs can amplify rapidly from one or a few elements to hundreds or thousands. The most active DNA transposon identified to date in plants or animals is mPing, a rice Tourist-like MITE that is a deletion derivative of the autonomous Ping element. Ping and the closely related Pong are the only known naturally active PIF/Harbinger elements. Some rice strains accumulate ~40 new mPing insertions per plant per generation. In this study we report the development of a yeast transposition assay as a first step in deciphering the mechanism underlying the amplification of Tourist-MITEs. Results The ORF1 and TPase proteins encoded by Ping and Pong have been shown to mobilize mPing in rice and in transgenic Arabidopsis. Initial tests of the native proteins in a yeast assay resulted in very low transposition. Significantly higher activities were obtained by mutation of a putative nuclear export signal (NES) in the TPase that increased the amount of TPase in the nucleus. When introduced into Arabidopsis, the NES mutant protein also catalyzed higher frequencies of mPing excision from the gfp reporter gene. Our yeast assay retains key features of excision and insertion of mPing including precise excision, extended insertion sequence preference, and a requirement for two proteins that can come from either Ping or Pong or both elements. Conclusions The yeast transposition assay provides a robust platform for analysis of the mechanism underlying transposition catalyzed by the two proteins of PIF/Harbinger elements. It recapitulates all of the features of excision and reinsertion of mPing as seen in plant systems. Furthermore, a mutation of a putative NES in the TPase increased transposition both in yeast and plants.
Collapse
Affiliation(s)
- C Nathan Hancock
- Plant Biology Department, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
40
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
41
|
Hirano Y, Iwase Y, Ishii K, Kumeta M, Horigome T, Takeyasu K. Cell cycle-dependent phosphorylation of MAN1. Biochemistry 2009; 48:1636-43. [PMID: 19166343 DOI: 10.1021/bi802060v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The LEM (LAP2beta, Emerin, and MAN1) proteins are essential for nuclear membrane targeting to chromatin via an association with barrier-to-autointegration factor (BAF). Herein, we focused on the mitotic phosphorylation of MAN1 and its biological role. MAN1 was phosphorylated in a cell cycle-dependent manner in the Xenopus egg cell-free system, and the mitotic phosphorylation at the N-terminal region of MAN1 suppressed the binding of MAN1 to BAF. Titansphere column chromatography followed by MS/MS sequencing identified at least three M-phase-specific phosphorylation sites, Thr-209, Ser-351, and Ser-402, and one cell cycle-independent phosphorylation site, Ser-463. An in vitro BAF binding assay involving mutants S402A and S402E suggested that the phosphorylation of Ser-402 was important for regulation of the binding of MAN1 to BAF.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Vollmar F, Hacker C, Zahedi RP, Sickmann A, Ewald A, Scheer U, Dabauvalle MC. Assembly of nuclear pore complexes mediated by major vault protein. J Cell Sci 2009; 122:780-6. [PMID: 19240118 DOI: 10.1242/jcs.039529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During interphase growth of eukaryotic cells, nuclear pore complexes (NPCs) are continuously incorporated into the intact nuclear envelope (NE) by mechanisms that are largely unknown. De novo formation of NPCs involves local fusion events between the inner and outer nuclear membrane, formation of a transcisternal membranous channel of defined diameter and the coordinated assembly of hundreds of nucleoporins into the characteristic NPC structure. Here we have used a cell-free system based on Xenopus egg extract, which allows the experimental separation of nuclear-membrane assembly and NPC formation. Nuclei surrounded by a closed double nuclear membrane, but devoid of NPCs, were first reconstituted from chromatin and a specific membrane fraction. Insertion of NPCs into the preformed pore-free nuclei required cytosol containing soluble nucleoporins or nucleoporin subcomplexes and, quite unexpectedly, major vault protein (MVP). MVP is the main component of vaults, which are ubiquitous barrel-shaped particles of enigmatic function. Our results implicate MVP, and thus also vaults, in NPC biogenesis and provide a functional explanation for the association of a fraction of vaults with the NE and specifically with NPCs in intact cells.
Collapse
Affiliation(s)
- Friederike Vollmar
- Division of Electron Microscopy, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J Cell Sci 2008; 121:2540-54. [PMID: 18628300 DOI: 10.1242/jcs.033597] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Assembly of the nuclear envelope (NE) in telophase is essential for higher eukaryotic cells to re-establish a functional nucleus. Time-lapse, FRAP and FRET analyses in human cells showed that barrier-to-autointegration factor (BAF), a DNA-binding protein, assembled first at the distinct ;core' region of the telophase chromosome and formed an immobile complex by directly binding with other core-localizing NE proteins, such as lamin A and emerin. Correlative light and electron microscopy after live cell imaging, further showed that BAF formed an electron-dense structure on the chromosome surface of the core, close to spindle microtubules (MTs) prior to the attachment of precursor NE membranes, suggesting that MTs may mediate core assembly of BAF. Disruption of the spindle MTs consistently abolished BAF accumulation at the core. In addition, RNAi of BAF eliminated the core assembly of lamin A and emerin, caused abnormal cytoplasmic accumulation of precursor nuclear membranes and resulted in a significant delay of NE assembly. These results suggest that the MT-mediated BAF accumulation at the core facilitates NE assembly at the end of mitosis.
Collapse
Affiliation(s)
- Tokuko Haraguchi
- CREST Research Project, Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lattanzi G, Ognibene A, Sabatelli P, Capanni C, Columbaro M, Santi S, Riccio M, Merlini L, Maraldi N, Squarzoni S, Toniolo D. Emerin expression at the early stages of myogenic differentiation. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Anderson DJ, Hetzer MW. Shaping the endoplasmic reticulum into the nuclear envelope. J Cell Sci 2008; 121:137-42. [PMID: 18187447 DOI: 10.1242/jcs.005777] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear envelope (NE), a double membrane enclosing the nucleus of eukaryotic cells, controls the flow of information between the nucleoplasm and the cytoplasm and provides a scaffold for the organization of chromatin and the cytoskeleton. In dividing metazoan cells, the NE breaks down at the onset of mitosis and then reforms around segregated chromosomes to generate the daughter nuclei. Recent data from intact cells and cell-free nuclear assembly systems suggest that the endoplasmic reticulum (ER) is the source of membrane for NE assembly. At the end of mitosis, ER membrane tubules are targeted to chromatin via tubule ends and reorganized into flat nuclear membrane sheets by specific DNA-binding membrane proteins. In contrast to previous models, which proposed vesicle fusion to be the principal mechanism of NE formation, these new studies suggest that the nuclear membrane forms by the chromatin-mediated reshaping of the ER.
Collapse
Affiliation(s)
- Daniel J Anderson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
46
|
Reinsch S. Movement of nuclei. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 13:Unit 13.4. [PMID: 18228323 DOI: 10.1002/0471143030.cb1304s10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes the first assay that reconstructs the movement of the female pronucleus in the newly fertilized frog egg. Nuclei are assembled in frog egg extracts and translocated along microtubules using the microtubule motor dynein.
Collapse
Affiliation(s)
- S Reinsch
- NASA-Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
47
|
Cell-cycle-dependent binding kinetics for the early endosomal tethering factor EEA1. EMBO Rep 2008; 9:171-8. [PMID: 18188183 DOI: 10.1038/sj.embor.7401152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/23/2007] [Accepted: 11/16/2007] [Indexed: 11/08/2022] Open
Abstract
Early endosomal antigen 1 (EEA1) is a cytosolic protein that specifically binds to early endosomal membranes where it has a crucial role in the tethering process leading to homotypic endosome fusion. Green fluorescent protein-tagged EEA1 (EEA1-GFP) was bound to the endosomal membrane throughout the cell cycle, and measurements using fluorescent recovery after photobleaching showed two fractions: one rapidly exchanging with the cytosolic pool, and the other with a long half-life. The exchange consists of a release and binding process, and we have separated these two by using GFP and photoactivable GFP. The release rate was identical to the exchange rate, showing that the dissociation characteristics determine the cycling of this molecule. During mitosis, we found that the dissociation rate was markedly accelerated and, in addition, the long-lived fraction was markedly reduced. This indicates that a fusion arrest in mitosis is not the result of EEA1 not binding to early endosomes, but rather due to the marked shift in membrane-binding characteristics. This might be a general mechanism to fine-tune and control tethering and fusion of early endosomes.
Collapse
|
48
|
Hirano Y, Takahashi H, Kumeta M, Hizume K, Hirai Y, Otsuka S, Yoshimura SH, Takeyasu K. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch 2008; 456:139-53. [PMID: 18172599 DOI: 10.1007/s00424-007-0431-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The recent technical development of atomic force microscopy (AFM) has made nano-biology of the nucleus an attractive and promising field. In this paper, we will review our current understanding of nuclear architecture and dynamics from the structural point of view. Especially, special emphases will be given to: (1) How to approach the nuclear architectures by means of new techniques using AFM, (2) the importance of the physical property of DNA in the construction of the higher-order structures, (3) the significance and implication of the linker and core histones and the nuclear matrix/scaffold proteins for the chromatin dynamics, (4) the nuclear proteins that contribute to the formation of the inner nuclear architecture. Spatio-temporal analyses using AFM, in combination with biochemical and cell biological approaches, will play important roles in the nano-biology of the nucleus, as most of nuclear structures and events occur in nanometer, piconewton and millisecond order. The new applications of AFM, such as recognition imaging, fast-scanning imaging, and a variety of modified cantilevers, are expected to be powerful techniques to reveal the nanostructure of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Kyoto University Graduate School of Biostudies, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Vaillant DC, Paulin-Levasseur M. Evaluation of mammalian cell-free systems of nuclear disassembly and assembly. J Histochem Cytochem 2007; 56:157-73. [PMID: 17967934 DOI: 10.1369/jhc.7a7330.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.
Collapse
Affiliation(s)
- Dominique C Vaillant
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|