1
|
Powell AM, Williams AE, Ables ET. Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642432. [PMID: 40161740 PMCID: PMC11952372 DOI: 10.1101/2025.03.10.642432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Many tissue-resident stem cells are retained through asymmetric cell division, a process that ensures stem cell self-renewal through each mitotic cell cycle. Asymmetric organelle distribution has been proposed as a mechanism by which stem cells are marked for long-term retention; however, it is not clear whether biased organelle localization is a cause or an effect of asymmetric division. In Drosophila females, an endoplasmic reticulum-like organelle called the fusome is continually regenerated in germline stem cells (GSCs) and associated with GSC division. Here, we report that the β-importin Tnpo-SR is essential for fusome regeneration. Depletion of Tnpo-SR disrupts cytoskeletal organization during interphase and nuclear membrane remodeling during mitosis. Tnpo-SR does not localize to microtubules, centrosomes, or the fusome, suggesting that its role in maintaining these processes is indirect. Despite this, we find that restoring fusome morphogenesis in Tnpo-SR-depleted GSCs is sufficient to rescue GSC maintenance and cell cycle progression. We conclude that Tnpo-SR functionally fusome regeneration to cell cycle progression, supporting the model that asymmetric rebuilding of fusome promotes maintenance of GSC identity and niche retention.
Collapse
Affiliation(s)
- Amanda M. Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858
- Current address: Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA, 30322
| | | |
Collapse
|
2
|
Tian LJ, Zheng YT, Dang Z, Xu S, Gong SL, Wang YT, Guan Y, Wu Z, Liu G, Tian YC. Near-Native Imaging of Metal Ion-Initiated Cell State Transition. ACS NANO 2025; 19:5279-5294. [PMID: 39874599 DOI: 10.1021/acsnano.4c12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography. The three-dimensional architecture of intact yeast directly shows that iron or manganese triggers a hormesis-like effect that promotes cell proliferation. This process leads to the reorganization of organelles in the preparation for division, characterized by the polar distribution of mitochondria, an increased number of lipid droplets (LDs), volume shrinkage, and the formation of a hollow structure. Additionally, vesicle-like structures that detach from the vacuole are observed. Oppositely, cadmium or mercury causes stress-associated phenotypes, including mitochondrial fragmentation, LD swelling, and autophagosome formation. Notably, the organellar interactome, encompassing the interactions between mitochondria and LDs and those between the nuclear envelope and LDs, is quantified and exhibits alteration with multifaceted features in response to different metal ions. More importantly, the dynamics of organellar architecture render them more sensitive biomarkers than traditional approaches for assessing the cell state. Strikingly, yeast has a powerful depuration capacity to isolate and transform the overaccumulated cadmium in the vacuole, mitochondria, and cytoplasm as a high-value product, quantum dots. This work presents the possibility of discovering fundamental links between organellar morphological characteristics and the cell state.
Collapse
Affiliation(s)
- Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Tong Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Lan Gong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Ting Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Rosas-Paz M, Zamora-Bello A, Torres-Ramírez N, Villarreal-Huerta D, Romero-Aguilar L, Pardo JP, El Hafidi M, Sandoval G, Segal-Kischinevzky C, González J. Nitrogen limitation-induced adaptive response and lipogenesis in the Antarctic yeast Rhodotorula mucilaginosa M94C9. Front Microbiol 2024; 15:1416155. [PMID: 39161597 PMCID: PMC11330776 DOI: 10.3389/fmicb.2024.1416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.
Collapse
Affiliation(s)
- Miguel Rosas-Paz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Alberto Zamora-Bello
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Unidad de Posgrado, Ciudad Universitaria, Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Villarreal-Huerta
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados, Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Guadalajara, Mexico
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Kim H, Juarez-Contreras I, Budin I. Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells. Methods Enzymol 2024; 700:77-104. [PMID: 38971613 PMCID: PMC12083250 DOI: 10.1016/bs.mie.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The biophysical drivers of membrane lateral heterogeneity, often termed lipid rafts, have been largely explored using synthetic liposomes or mammalian plasma membrane-derived giant vesicles. Yeast vacuoles, an organelle comparable to mammalian lysosomes, is the only in vivo system that shows stable micrometer scale phase separation in unperturbed cells. The ease of manipulating lipid metabolism in yeast makes this a powerful system for identifying lipids involved in the onset of vacuole membrane heterogeneity. Vacuole domains are induced by stationary stage growth and nutritional starvation, during which they serve as a docking and internalization site for lipid droplet energy stores. Here we describe methods for characterizing vacuole phase separation, its physiological function, and its lipidic drivers. First, we detail methodologies for robustly inducing vacuole domain formation and quantitatively characterizing during live cell imaging experiments. Second, we detail a new protocol for biochemical isolation of stationary stage vacuoles, which allows for lipidomic dissection of membrane phase separation. Third, we describe biochemical techniques for analyzing lipid droplet internalization in vacuole domains. When combined with genetic or chemical perturbations to lipid metabolism, these methods allow for systematic dissection of lipid composition in the structure and function of ordered membrane domains in living cells.
Collapse
Affiliation(s)
- Hyesoo Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Israel Juarez-Contreras
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
5
|
Huda M, Bektas SN, Bekdas B, Caydasi AK. The signalling lipid PI3,5P 2 is essential for timely mitotic exit. Open Biol 2023; 13:230125. [PMID: 37751887 PMCID: PMC10522413 DOI: 10.1098/rsob.230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Coordination of mitotic exit with chromosome segregation is key for successful mitosis. Mitotic exit in budding yeast is executed by the mitotic exit network (MEN), which is negatively regulated by the spindle position checkpoint (SPOC). SPOC kinase Kin4 is crucial for SPOC activation in response to spindle positioning defects. Here, we report that the lysosomal signalling lipid phosphatidylinositol-3,5-bisphosphate (PI3,5P2) has an unanticipated role in the timely execution of mitotic exit. We show that the lack of PI3,5P2 causes a delay in mitotic exit, whereas elevated levels of PI3,5P2 accelerates mitotic exit in mitotic exit defective cells. Our data indicate that PI3,5P2 promotes mitotic exit in part through impairment of Kin4. This process is largely dependent on the known PI3,5P2 effector protein Atg18. Our work thus uncovers a novel link between PI3,5P2 and mitotic exit.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Baris Bekdas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
6
|
Santana-Sosa S, Matos-Perdomo E, Ayra-Plasencia J, Machín F. A Yeast Mitotic Tale for the Nucleus and the Vacuoles to Embrace. Int J Mol Sci 2023; 24:9829. [PMID: 37372977 DOI: 10.3390/ijms24129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.
Collapse
Affiliation(s)
- Silvia Santana-Sosa
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Emiliano Matos-Perdomo
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Jessel Ayra-Plasencia
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Research Unit, University Hospital Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Faculty of Health Sciences, Fernando Pessoa Canarias University, 35450 Santa María de Guía, Spain
| |
Collapse
|
7
|
Kim H, Park J, Kim H, Ko N, Park J, Jang E, Yoon S, Diaz J, Lee C, Jun Y. Structures of Vac8-containing protein complexes reveal the underlying mechanism by which Vac8 regulates multiple cellular processes. Proc Natl Acad Sci U S A 2023; 120:e2211501120. [PMID: 37094131 PMCID: PMC10161063 DOI: 10.1073/pnas.2211501120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.
Collapse
Affiliation(s)
- Hyejin Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Jihyeon Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Hyunwoo Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Naho Ko
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Jumi Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Eunhong Jang
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - So Young Yoon
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Joyce Anne R. Diaz
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Changwook Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| |
Collapse
|
8
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
9
|
Gokbayrak ZD, Patel D, Brett CL. Acetate and hypertonic stress stimulate vacuole membrane fission using distinct mechanisms. PLoS One 2022; 17:e0271199. [PMID: 35834522 PMCID: PMC9282455 DOI: 10.1371/journal.pone.0271199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
Vacuoles in plants and fungi play critical roles in cell metabolism and osmoregulation. To support these functions, vacuoles change their morphology, e.g. they fragment when these organisms are challenged with draught, high salinity or metabolic stress (e.g. acetate accumulation). In turn, morphology reflects an equilibrium between membrane fusion and fission that determines size, shape and copy number. By studying Saccharomyces cerevisiae and its vacuole as models, conserved molecular mechanisms responsible for fusion have been revealed. However, a detailed understanding of vacuole fission and how these opposing processes respond to metabolism or osmoregulation remain elusive. Herein we describe a new fluorometric assay to measure yeast vacuole fission in vitro. For proof–of–concept, we use this assay to confirm that acetate, a metabolic stressor, triggers vacuole fission and show it blocks homotypic vacuole fusion in vitro. Similarly, hypertonic stress induced by sorbitol or glucose caused robust vacuole fission in vitro whilst inhibiting fusion. Using wortmannin to inhibit phosphatidylinositol (PI) -kinases or rGyp1-46 to inactivate Rab–GTPases, we show that acetate stress likely targets PI signaling, whereas osmotic stress affects Rab signaling on vacuole membranes to stimulate fission. This study sets the stage for further investigation into the mechanisms that change vacuole morphology to support cell metabolism and osmoregulation.
Collapse
Affiliation(s)
| | - Dipti Patel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
10
|
Bijlani S, Parker C, Singh NK, Sierra MA, Foox J, Wang CCC, Mason CE, Venkateswaran K. Genomic Characterization of the Titan-like Cell Producing Naganishia tulchinskyi, the First Novel Eukaryote Isolated from the International Space Station. J Fungi (Basel) 2022; 8:165. [PMID: 35205919 PMCID: PMC8875396 DOI: 10.3390/jof8020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple strains of a novel yeast belonging to genus Naganishia were isolated from environmental surfaces aboard the International Space Station (ISS). These strains exhibited a phenotype similar to Titan cell (~10 µm diameter) morphology when grown under a combination of simulated microgravity and 5% CO2 conditions. Confocal, scanning, and transmission electron microscopy revealed distinct morphological differences between the microgravity-grown cells and the standard Earth gravity-grown cells, including larger cells and thicker cell walls, altered intracellular morphology, modifications to extracellular fimbriae, budding, and the shedding of bud scars. Phylogenetic analyses via multi-locus sequence typing indicated that these ISS strains represented a single species in the genus Naganishia and were clustered with Naganishia diffluens. The name Naganishia tulchinskyi is proposed to accommodate these strains, with IF6SW-B1T as the holotype. The gene ontologies were assigned to the cell morphogenesis, microtubule-based response, and response to UV light, suggesting a variety of phenotypes that are well suited to respond to microgravity and radiation. Genomic analyses also indicated that the extracellular region, outer membrane, and cell wall were among the highest cellular component results, thus implying a set of genes associated with Titan-like cell plasticity. Finally, the highest molecular function matches included cytoskeletal motor activity, microtubule motor activity, and nuclear export signal receptor activity.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Ceth Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| | - Maria A. Sierra
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA;
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Jonathan Foox
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; (S.B.); (C.C.C.W.)
| | - Christopher E. Mason
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10021, USA;
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; (C.P.); (N.K.S.)
| |
Collapse
|
11
|
Early onset effects of single substrate accumulation recapitulate major features of LSD in patient-derived lysosomes. iScience 2021; 24:102707. [PMID: 34258549 PMCID: PMC8253970 DOI: 10.1016/j.isci.2021.102707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/06/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Lysosome functions mainly rely on their ability to either degrade substrates or release them into the extracellular space. Lysosomal storage disorders (LSDs) are commonly characterized by a chronic lysosomal accumulation of different substrates, thereby causing lysosomal dysfunctions and secretion defects. However, the early effects of substrate accumulation on lysosomal homeostasis have not been analyzed so far. Here, we describe how the acute accumulation of a single substrate determines a rapid centripetal redistribution of the lysosomes, triggering their expansion and reducing their secretion, by limiting the motility of these organelles toward the plasma membrane. Moreover, we provide evidence that such defects could be explained by a trapping mechanism exerted by the extensive contacts between the enlarged lysosomes and the highly intertwined membrane structures of the endoplasmic reticulum which might represent a crucial biological cue ultimately leading to the clinically relevant secondary defects observed in the LSD experimental models and patients. LEU-ME triggers a rapid expansion of the lysosomal compartment Expanded lysosomes display motility and secretion defects Enlarged lysosomes display extended endoplasmic reticulum membrane contact sites
Collapse
|
12
|
Chen Z, Malia PC, Hatakeyama R, Nicastro R, Hu Z, Péli-Gulli MP, Gao J, Nishimura T, Eskes E, Stefan CJ, Winderickx J, Dengjel J, De Virgilio C, Ungermann C. TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Curr Biol 2020; 31:297-309.e8. [PMID: 33157024 DOI: 10.1016/j.cub.2020.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.
Collapse
Affiliation(s)
- Zilei Chen
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Pedro Carpio Malia
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Marie-Pierre Péli-Gulli
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elja Eskes
- Functional Biology, KU Leuven, Kasteelpark Arensberg 31, 3000 Leuven, Belgium
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arensberg 31, 3000 Leuven, Belgium
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
13
|
Niwa M. A cell cycle checkpoint for the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118825. [PMID: 32828757 DOI: 10.1016/j.bbamcr.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The generation of new cells is one of the most fundamental aspects of cell biology. Proper regulation of the cell cycle is critical for human health, as underscored by many diseases associated with errors in cell cycle regulation, including both cancer and hereditary diseases. A large body of work has identified regulatory mechanisms and checkpoints that ensure accurate and timely replication and segregation of chromosomal DNA. However, few studies have evaluated the extent to which similar checkpoints exist for the division of cytoplasmic components, including organelles. Such checkpoint mechanisms might be crucial for compartments that cannot be generated de novo, such as the endoplasmic reticulum (ER). In this review, we highlight recent work in the model organism Saccharomyces cerevisiae that led to the discovery of such a checkpoint that ensures that cells inherit functional ER into the daughter cell.
Collapse
Affiliation(s)
- Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, NSB#1, Rm 5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States of America.
| |
Collapse
|
14
|
Manandhar SP, Siddiqah IM, Cocca SM, Gharakhanian E. A kinase cascade on the yeast lysosomal vacuole regulates its membrane dynamics: conserved kinase Env7 is phosphorylated by casein kinase Yck3. J Biol Chem 2020; 295:12262-12278. [PMID: 32647006 PMCID: PMC7443493 DOI: 10.1074/jbc.ra119.012346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3-Env7 kinase cascade.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Ikha M Siddiqah
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Stephanie M Cocca
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA.
| |
Collapse
|
15
|
Cui Y, Zhao Q, Hu S, Jiang L. Vacuole Biogenesis in Plants: How Many Vacuoles, How Many Models? TRENDS IN PLANT SCIENCE 2020; 25:538-548. [PMID: 32407694 DOI: 10.1016/j.tplants.2020.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 05/22/2023]
Abstract
Vacuoles are the largest membrane-bounded organelles and have essential roles in plant growth and development, but several important questions on the biogenesis and dynamics of lytic vacuoles (LVs) remain. Here, we summarize and discuss recent research and models of vacuole formation, and propose, with testable hypotheses, that besides inherited vacuoles, plant cells can also synthesize LVs de novo from multiple organelles and routes in response to growth and development or external factors. Therefore, LVs may be further classified into different subgroups and/or populations with different pH, cargos, and functions, among which multivesicular body (MVB)-derived small vacuoles are the main source for central vacuole formation in arabidopsis root cortical cells.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
16
|
Agrawal P, Manjithaya R, Surolia N. Autophagy‐related protein
Pf
ATG18 participates in food vacuole dynamics and autophagy‐like pathway in
Plasmodium falciparum. Mol Microbiol 2019; 113:766-782. [DOI: 10.1111/mmi.14441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Palak Agrawal
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Namita Surolia
- Molecular Biology and Genetics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| |
Collapse
|
17
|
Park J, Kim HI, Jeong H, Lee M, Jang SH, Yoon SY, Kim H, Park ZY, Jun Y, Lee C. Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways. Autophagy 2019; 16:991-1006. [PMID: 31512555 PMCID: PMC7469494 DOI: 10.1080/15548627.2019.1659615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-Å extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Δ19–33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways. Abbreviations Ape1: aminopeptidase I; ARM: armadillo repeat; Atg: autophagy-related; AUC: analytical ultracentrifugation; Cvt: cytoplasm-to-vacuole targeting; DIC: differential interference contrast; GFP: green fluorescent protein; GST: glutathione-S-transferase; ITC: isothermal titration calorimetry; NVJ: nucleus-vacuole junction; PDB: protein data bank; PMN: piecemeal microautophagy of the nucleus; prApe1: precursor Ape1; RMSD: root-mean-square deviation; SAXS: small-angle X-ray scattering; SD-N: nitrogen starvation medium; SEC: size-exclusion chromatography; tAtg13: Atg13 construct comprising residues 567–695; tNvj1: Nvj1 construct comprising residues 229–321; tVac8: Vac8 construct comprising residues 10–515; Vac8: vacuole related 8
Collapse
Affiliation(s)
- Jumi Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Hye-In Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea.,School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Hanbin Jeong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Miriam Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea.,School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - So Young Yoon
- Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea.,School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Hyejin Kim
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea.,School of Life Sciences, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology , Gwangju, Republic of Korea
| |
Collapse
|
18
|
Siavoshi F, Heydari S, Shafiee M, Ahmadi S, Saniee P, Sarrafnejad A, Kolahdoozan S. Sequestration inside the yeast vacuole may enhance Helicobacter pylori survival against stressful condition. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:127-133. [PMID: 30682548 DOI: 10.1016/j.meegid.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Vacuole of eukaryotic cells, beyond intracellular digestion plays additional roles such as storage of nutrients that provide favorable conditions for bacterial survival. In this study, occurrence of H. pylori inside the vacuole of Candida yeast was studied and the role of vacuolating cytotoxin A (VacA) in constructing the vacuole was discussed. One gastric Candida yeast was used for Live/Dead stain and fluorescence in situ hybridization (FISH) with universal bacterial probe. Yeast total DNA was used for amplification of full-length bacterial 16S rDNA as well as H. pylori-specific 16S rDNA and vacA alleles. Vacuoles were isolated from yeast cells and stained with fluorescent yeast vacuole membrane marker MDY-64. DNA extracted from vacuoles was used for amplification of H. pylori-specific 16S rDNA. Fluorescent microscopy showed occurrence of viable bacteria inside the vacuole of intact Candida yeast cells. FISH showed intracellular bacteria as fluorescent spots inside the vacuole of mother and daughter yeast cells, suggesting bacterial transmission to next generations of yeast. Sequencing of amplified products of bacterial 16S rDNA and amplification of H. pylori 16S rDNA and vacA confirmed the identity of intracellular bacteria as H. pylori. Isolated vacuoles were stained with membrane-specific marker and H. pylori 16S rDNA was amplified from their DNA content. Results of this study suggest yeast vacuole as a specialized niche for H. pylori. It appears that sequestration inside the vacuole may enhance bacterial survival.
Collapse
Affiliation(s)
- Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran.
| | - Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Mahsa Shafiee
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Somayeh Ahmadi
- Department of Microbiology, School of Biology, University College of Sciences, Tehran University, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Kolahdoozan
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL. Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion. Dev Cell 2018; 47:80-97.e6. [PMID: 30269949 DOI: 10.1016/j.devcel.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/01/2018] [Accepted: 09/01/2018] [Indexed: 01/17/2023]
Abstract
Upon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling. But how ILF formation is optimized for membrane turnover is not understood. Here, we show that fewer ILFs form when the interaction between the Rab-GTPase Ypt7 and its effector Vps41 (a subunit of the tethering complex HOPS) is interrupted by a point mutation (Ypt7-D44N). Subsequent phosphorylation of Vps41 by the casein kinase Yck3 prevents stabilization of trans-SNARE complexes needed for lipid bilayer pore formation. Impairing ILF formation prevents clearance of misfolded proteins from vacuole membranes and promotes organelle permeability and cell death. We propose that HOPS coordinates Rab, kinase, and SNARE cycles to modulate ILF size during vacuole fusion, regulating lipid and protein turnover important for quality control and membrane integrity.
Collapse
Affiliation(s)
- Mahmoud Abdul Karim
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Erin Kate McNally
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Dieter Ronny Samyn
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Sevan Mattie
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Christopher Leonard Brett
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada.
| |
Collapse
|
21
|
Freeman SA, Grinstein S. Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic 2018; 19:965-974. [DOI: 10.1111/tra.12614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Spencer A. Freeman
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
22
|
Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Fungal Genet Biol 2018; 118:10-20. [DOI: 10.1016/j.fgb.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
|
23
|
D'Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A. SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 2018; 37:embj.201899193. [PMID: 30120144 DOI: 10.15252/embj.201899193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Göttingen, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura J Endter
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
24
|
Yang Y, Liu Q, Jiang G, Chen S, Zhou L, Sakamoto N, Kuno T, Fang Y, Yao F. Genome-wide screen reveals important roles for ESCRT proteins in drug/ion resistance of fission yeast. PLoS One 2018; 13:e0198516. [PMID: 29856841 PMCID: PMC5983419 DOI: 10.1371/journal.pone.0198516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
To study sodium homeostasis, we performed a genome-wide screen for deletion strains that show resistance to NaCl. We identified 34 NaCl-resistant strains. Among them, the largest group that consists of 10 genes related to membrane trafficking and 7 out of 10 genes are ESCRT proteins which are involved in cargo transportation into luminal vesicles within the multivesicular body. All of the ESCRT related mutants which showed sodium resistance also showed defects in vacuole fusion. To further understand the role of the ESCRT pathway in various ion homeostasis, we examined sensitivity of these ESCRT mutants to various cation salts other than NaCl, including KCl, LiCl, CaCl2, CoCl2, MgCl2, NiSO4 and MnCl2. While these ESCRT mutants showed resistance to LiCl, CoCl2 and MgCl2, they showed sensitivity to KCl, CaCl2, NiSO4 and MnCl2. Then we examined sensitivity of these ESCRT mutants to various drugs which are known to inhibit the growth of fission yeast cells. While these ESCRT mutants were more or equally sensitive to most of the drugs tested as compared to the wild-type cells, they showed resistance to some drugs such as tamoxifen, fluorouracil and amiodarone. These results suggest that the ESCRT pathway plays important roles in drug/ion resistance of fission yeast.
Collapse
Affiliation(s)
- Yikun Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Lina Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
- Division of Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
26
|
Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts. Sci Rep 2018; 8:2644. [PMID: 29422608 PMCID: PMC5805771 DOI: 10.1038/s41598-018-20781-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
When exposed to sublethal high temperatures, budding yeast cells can survive for a period of time; however, a sufficient amount of ubiquitin is necessary for this survival. To understand the nature of the stress, we examined the morphological changes in yeast cells, focusing on the vacuoles. Changes in vacuolar morphology were notable, and ruffled vacuolar membranes, accelerated invaginations of vacuolar membranes, and vesicle-like formations were observed. These changes occurred in the absence of Atg1, Atg9 or Ivy1 but appeared to require endosomal sorting proteins, such as Vps23, Vps24 or Pep12. Furthermore, the serial sections of the vacuoles analysed using an electron microscopic analysis revealed that spherical invaginated structures were linked together in a vacuole. Because degradation of cell surface proteins is induced from heat stress, fusion of endosomal and vacuolar membranes might occur frequently in heat-stressed cells, and yeast cells might be able to cope with a rapid increase in vacuolar surface area by such invaginations.
Collapse
|
27
|
Mayhew MB, Iversen ES, Hartemink AJ. Characterization of dependencies between growth and division in budding yeast. J R Soc Interface 2017; 14:rsif.2016.0993. [PMID: 28228543 DOI: 10.1098/rsif.2016.0993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G2/M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.
Collapse
Affiliation(s)
- Michael B Mayhew
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA .,Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Edwin S Iversen
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Department of Statistical Science, Duke University, Durham, NC, USA
| | - Alexander J Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Department of Statistical Science, Duke University, Durham, NC, USA.,Department of Computer Science, Duke University, Durham, NC, USA.,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 2016; 6:29045. [PMID: 27363625 PMCID: PMC4929563 DOI: 10.1038/srep29045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.
Collapse
|
29
|
de Marcos Lousa C, Denecke J. Lysosomal and vacuolar sorting: not so different after all! Biochem Soc Trans 2016; 44:891-7. [PMID: 27284057 PMCID: PMC5264500 DOI: 10.1042/bst20160050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/12/2022]
Abstract
Soluble hydrolases represent the main proteins of lysosomes and vacuoles and are essential to sustain the lytic properties of these organelles typical for the eukaryotic organisms. The sorting of these proteins from ER residents and secreted proteins is controlled by highly specific receptors to avoid mislocalization and subsequent cellular damage. After binding their soluble cargo in the early stage of the secretory pathway, receptors rely on their own sorting signals to reach their target organelles for ligand delivery, and to recycle back for a new round of cargo recognition. Although signals in cargo and receptor molecules have been studied in human, yeast and plant model systems, common denominators and specific examples of diversification have not been systematically explored. This review aims to fill this niche by comparing the structure and the function of lysosomal/vacuolar sorting receptors (VSRs) from these three organisms.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- School of Clinical and Applied Sciences, Faculty of Biomedical Sciences, Leeds Beckett University, Leeds LS13HE, U.K. Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| | - Jurgen Denecke
- Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| |
Collapse
|
30
|
Desfougères Y, Neumann H, Mayer A. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 2016; 129:2817-28. [PMID: 27252384 DOI: 10.1242/jcs.184382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 11/20/2022] Open
Abstract
Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.
Collapse
Affiliation(s)
- Yann Desfougères
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| | - Heinz Neumann
- GZMB, Institut für Molekulare Strukturbiologie, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| |
Collapse
|
31
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fragmentation. Curr Genet 2016; 63:35-42. [PMID: 27233284 DOI: 10.1007/s00294-016-0616-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
32
|
Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance. Curr Biol 2016; 26:1221-8. [PMID: 27151661 DOI: 10.1016/j.cub.2016.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
Abstract
It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.
Collapse
|
33
|
Bioengineered yeast-derived vacuoles with enhanced tissue-penetrating ability for targeted cancer therapy. Proc Natl Acad Sci U S A 2015; 113:710-5. [PMID: 26715758 DOI: 10.1073/pnas.1509371113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the appreciable success of synthetic nanomaterials for targeted cancer therapy in preclinical studies, technical challenges involving their large-scale, cost-effective production and intrinsic toxicity associated with the materials, as well as their inability to penetrate tumor tissues deeply, limit their clinical translation. Here, we describe biologically derived nanocarriers developed from a bioengineered yeast strain that may overcome such impediments. The budding yeast Saccharomyces cerevisiae was genetically engineered to produce nanosized vacuoles displaying human epidermal growth factor receptor 2 (HER2)-specific affibody for active targeting. These nanosized vacuoles efficiently loaded the anticancer drug doxorubicin (Dox) and were effectively endocytosed by cultured cancer cells. Their cancer-targeting ability, along with their unique endomembrane compositions, significantly enhanced drug penetration in multicellular cultures and improved drug distribution in a tumor xenograft. Furthermore, Dox-loaded vacuoles successfully prevented tumor growth without eliciting any prolonged immune responses. The current study provides a platform technology for generating cancer-specific, tissue-penetrating, safe, and scalable biological nanoparticles for targeted cancer therapy.
Collapse
|
34
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4618-30. [PMID: 26466677 PMCID: PMC4678019 DOI: 10.1091/mbc.e15-06-0344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/07/2015] [Indexed: 01/15/2023] Open
Abstract
The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress-induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress-induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 )
| |
Collapse
|
35
|
Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry. Proc Natl Acad Sci U S A 2015; 112:11977-82. [PMID: 26351681 DOI: 10.1073/pnas.1506054112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.
Collapse
|
36
|
Deranieh RM, Shi Y, Tarsio M, Chen Y, McCaffery JM, Kane PM, Greenberg ML. Perturbation of the Vacuolar ATPase: A NOVEL CONSEQUENCE OF INOSITOL DEPLETION. J Biol Chem 2015; 290:27460-72. [PMID: 26324718 DOI: 10.1074/jbc.m115.683706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Depletion of inositol has profound effects on cell function and has been implicated in the therapeutic effects of drugs used to treat epilepsy and bipolar disorder. We have previously shown that the anticonvulsant drug valproate (VPA) depletes inositol by inhibiting myo-inositol-3-phosphate synthase, the enzyme that catalyzes the first and rate-limiting step of inositol biosynthesis. To elucidate the cellular consequences of inositol depletion, we screened the yeast deletion collection for VPA-sensitive mutants and identified mutants in vacuolar sorting and the vacuolar ATPase (V-ATPase). Inositol depletion caused by starvation of ino1Δ cells perturbed the vacuolar structure and decreased V-ATPase activity and proton pumping in isolated vacuolar vesicles. VPA compromised the dynamics of phosphatidylinositol 3,5-bisphosphate (PI3,5P2) and greatly reduced V-ATPase proton transport in inositol-deprived wild-type cells. Osmotic stress, known to increase PI3,5P2 levels, did not restore PI3,5P2 homeostasis nor did it induce vacuolar fragmentation in VPA-treated cells, suggesting that perturbation of the V-ATPase is a consequence of altered PI3,5P2 homeostasis under inositol-limiting conditions. This study is the first to demonstrate that inositol depletion caused by starvation of an inositol synthesis mutant or by the inositol-depleting drug VPA leads to perturbation of the V-ATPase.
Collapse
Affiliation(s)
- Rania M Deranieh
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Yihui Shi
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Maureen Tarsio
- the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Yan Chen
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - J Michael McCaffery
- the Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Patricia M Kane
- the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202,
| |
Collapse
|
37
|
Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast. EUKARYOTIC CELL 2015; 14:858-67. [PMID: 26092920 DOI: 10.1128/ec.00068-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
The gametogenesis program of the budding yeast Saccharomyces cerevisiae, also known as sporulation, employs unusual internal meiotic divisions, after which all four meiotic products differentiate within the parental cell. We showed previously that sporulation is typically accompanied by the destruction of discarded immature meiotic products through their exposure to proteases released from the mother cell vacuole, which undergoes an apparent programmed rupture. Here we demonstrate that vacuolar rupture contributes to de facto programmed cell death (PCD) of the meiotic mother cell itself. Meiotic mother cell PCD is accompanied by an accumulation of depolarized mitochondria, organelle swelling, altered plasma membrane characteristics, and cytoplasmic clearance. To ensure that the gametes survive the destructive consequences of developing within a cell that is executing PCD, we hypothesized that PCD is restrained from occurring until spores have attained a threshold degree of differentiation. Consistent with this hypothesis, gene deletions that perturb all but the most terminal postmeiotic spore developmental stages are associated with altered PCD. In these mutants, meiotic mother cells exhibit a delay in vacuolar rupture and then appear to undergo an alternative form of PCD associated with catastrophic consequences for the underdeveloped spores. Our findings reveal yeast sporulation as a context of bona fide PCD that is developmentally coordinated with gamete differentiation.
Collapse
|
38
|
PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 2015; 99:8667-80. [PMID: 26051671 DOI: 10.1007/s00253-015-6708-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/22/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022]
Abstract
In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.
Collapse
|
39
|
Tartakoff AM. Cell biology of yeast zygotes, from genesis to budding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1702-14. [PMID: 25862405 DOI: 10.1016/j.bbamcr.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
40
|
Chan YHM, Marshall WF. Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates. Biophys J 2014; 106:1986-96. [PMID: 24806931 DOI: 10.1016/j.bpj.2014.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/15/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022] Open
Abstract
Organelles serve as biochemical reactors in the cell, and often display characteristic scaling trends with cell size, suggesting mechanisms that coordinate their sizes. In this study, we measure the vacuole-cell size scaling trends in budding yeast using optical microscopy and a novel, to our knowledge, image analysis algorithm. Vacuole volume and surface area both show characteristic scaling trends with respect to cell size that are consistent among different strains. Rapamycin treatment was found to increase vacuole-cell size scaling trends for both volume and surface area. Unexpectedly, these increases did not depend on macroautophagy, as similar increases in vacuole size were observed in the autophagy deficient mutants atg1Δ and atg5Δ. Rather, rapamycin appears to act on vacuole size by inhibiting retrograde membrane trafficking, as the atg18Δ mutant, which is defective in retrograde trafficking, shows similar vacuole size scaling to rapamycin-treated cells and is itself insensitive to rapamycin treatment. Disruption of anterograde membrane trafficking in the apl5Δ mutant leads to complementary changes in vacuole size scaling. These quantitative results lead to a simple model for vacuole size scaling based on proportionality between cell growth rates and vacuole growth rates.
Collapse
Affiliation(s)
- Yee-Hung Mark Chan
- Center for Systems and Synthetic Biology and Department of Biochemistry and Biophysics, University of California, San Francisco, California.
| | - Wallace F Marshall
- Center for Systems and Synthetic Biology and Department of Biochemistry and Biophysics, University of California, San Francisco, California.
| |
Collapse
|
41
|
Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments. PLoS Genet 2014; 10:e1004041. [PMID: 24415948 PMCID: PMC3886903 DOI: 10.1371/journal.pgen.1004041] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023] Open
Abstract
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution. We studied adaptive evolution in different nitrogen-limited environments using long-term selection of asexually reproducing Saccharomyces cerevisiae populations in chemostats. Using next generation sequencing and DNA microarrays, we identified all acquired genetic variation associated with increased fitness, in both individual lineages and entire populations. We find that amplification alleles that include nutrient transporter genes specific to the molecular form of the nitrogen present in the environment are a common mechanism underlying increased fitness. In addition, we identified a general strategy for adaptation to nitrogen-limited environments that entails remodeling of phospholipid biogenesis required for producing important cellular components including vacuoles and autophagosomes. More general strategies for adaptation to nutrient-limited environments point to a role for re-wiring of signaling pathways that coordinate cell growth with nutrient availability. We reconstructed the evolutionary dynamics of a population evolving in ammonium-limited conditions and find that a multi-locus genotype is repeatedly selected within the population and constrained by epistasis. We propose that this genotype constitutes a “gene network polymorphism (GNP),” which may be a common outcome of adaptive evolution. Our study suggests that when the selective pressure is understood the molecular basis of adaptive evolution in large microbial populations may be predicted with reasonable precision.
Collapse
|
42
|
Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. EUKARYOTIC CELL 2013; 12:1369-82. [PMID: 23913543 DOI: 10.1128/ec.00118-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vacuolar membrane ATPase (V-ATPase) is a protein complex that utilizes ATP hydrolysis to drive protons from the cytosol into the vacuolar lumen, acidifying the vacuole and modulating several key cellular response systems in Saccharomyces cerevisiae. To study the contribution of V-ATPase to the biology and virulence attributes of the opportunistic fungal pathogen Candida albicans, we created a conditional mutant in which VMA3 was placed under the control of a tetracycline-regulated promoter (tetR-VMA3 strain). Repression of VMA3 in the tetR-VMA3 strain prevents V-ATPase assembly at the vacuolar membrane and reduces concanamycin A-sensitive ATPase-specific activity and proton transport by more than 90%. Loss of C. albicans V-ATPase activity alkalinizes the vacuolar lumen and has pleiotropic effects, including pH-dependent growth, calcium sensitivity, and cold sensitivity. The tetR-VMA3 strain also displays abnormal vacuolar morphology, indicative of defective vacuolar membrane fission. The tetR-VMA3 strain has impaired aspartyl protease and lipase secretion, as well as attenuated virulence in an in vitro macrophage killing model. Repression of VMA3 suppresses filamentation, and V-ATPase-dependent filamentation defects are not rescued by overexpression of RIM8, MDS3, EFG1, CST20, or UME6, which encode positive regulators of filamentation. Specific chemical inhibition of Vma3p function also results in defective filamentation. These findings suggest either that V-ATPase functions downstream of these transcriptional regulators or that V-ATPase function during filamentation involves independent mechanisms and alternative signaling pathways. Taken together, these data indicate that V-ATPase activity is a fundamental requirement for several key virulence-associated traits in C. albicans.
Collapse
|
43
|
Campeau P, Lenk G, Lu J, Bae Y, Burrage L, Turnpenny P, Román Corona-Rivera J, Morandi L, Mora M, Reutter H, Vulto-van Silfhout A, Faivre L, Haan E, Gibbs R, Meisler M, Lee B. Yunis-Varón syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am J Hum Genet 2013; 92:781-91. [PMID: 23623387 DOI: 10.1016/j.ajhg.2013.03.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/17/2013] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Yunis-Varón syndrome (YVS) is an autosomal-recessive disorder with cleidocranial dysplasia, digital anomalies, and severe neurological involvement. Enlarged vacuoles are found in neurons, muscle, and cartilage. By whole-exome sequencing, we identified frameshift and missense mutations of FIG4 in affected individuals from three unrelated families. FIG4 encodes a phosphoinositide phosphatase required for regulation of PI(3,5)P(2) levels, and thus endosomal trafficking and autophagy. In a functional assay, both missense substitutions failed to correct the vacuolar phenotype of Fig4-null mouse fibroblasts. Homozygous Fig4-null mice exhibit features of YVS, including neurodegeneration and enlarged vacuoles in neurons. We demonstrate that Fig4-null mice also have small skeletons with reduced trabecular bone volume and cortical thickness and that cultured osteoblasts accumulate large vacuoles. Our findings demonstrate that homozygosity or compound heterozygosity for null mutations of FIG4 is responsible for YVS, the most severe known human phenotype caused by defective phosphoinositide metabolism. In contrast, in Charcot-Marie-Tooth disease type 4J (also caused by FIG4 mutations), one of the FIG4 alleles is hypomorphic and disease is limited to the peripheral nervous system. This genotype-phenotype correlation demonstrates that absence of FIG4 activity leads to central nervous system dysfunction and extensive skeletal anomalies. Our results describe a role for PI(3,5)P(2) signaling in skeletal development and maintenance.
Collapse
|
44
|
Michaillat L, Mayer A. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 2013; 8:e54160. [PMID: 23383298 PMCID: PMC3562189 DOI: 10.1371/journal.pone.0054160] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.
Collapse
Affiliation(s)
- Lydie Michaillat
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Functional roles of YPT31 and YPT32 in clotrimazole resistance of Saccharomyces cerevisiae through effects on vacuoles and ATP-binding cassette transporter(s). J Biosci Bioeng 2013; 115:4-11. [DOI: 10.1016/j.jbiosc.2012.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/29/2022]
|
46
|
Saccharomyces cerevisiae Env7 is a novel serine/threonine kinase 16-related protein kinase and negatively regulates organelle fusion at the lysosomal vacuole. Mol Cell Biol 2012; 33:526-42. [PMID: 23166297 DOI: 10.1128/mcb.01303-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.
Collapse
|
47
|
Petrezselyova S, Kinclova-Zimmermannova O, Sychrova H. Vhc1, a novel transporter belonging to the family of electroneutral cation-Cl(-) cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:623-31. [PMID: 23022132 DOI: 10.1016/j.bbamem.2012.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022]
Abstract
Cation-Cl(-) cotransporters (CCCs) are integral membrane proteins which catalyze the coordinated symport of Cl(-) with Na(+) and/or K(+) ions in plant and mammalian cells. Here we describe the first Saccharomyces cerevisiae CCC protein, encoded by the YBR235w open reading frame. Subcellular localization studies showed that this yeast CCC is targeted to the vacuolar membrane. Deletion of the YBR235w gene in a salt-sensitive strain (lacking the plasma-membrane cation exporters) resulted in an increased sensitivity to high KCl, altered vacuolar morphology control and decreased survival upon hyperosmotic shock. In addition, deletion of the YBR235w gene in a mutant strain deficient in K(+) uptake produced a significant growth advantage over the parental strain under K(+)-limiting conditions, and a hypersensitivity to the exogenous K(+)/H(+) exchanger nigericin. These results strongly suggest that we have identified a novel yeast vacuolar ion transporter mediating a K(+)-Cl(-) cotransport and playing a role in vacuolar osmoregulation. Considering its identified function, we propose to refer to the yeast YBR235w gene as VHC1 (vacuolar protein homologous to CCC family 1).
Collapse
Affiliation(s)
- Silvia Petrezselyova
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | |
Collapse
|
48
|
Richards A, Gow NAR, Veses V. Identification of vacuole defects in fungi. J Microbiol Methods 2012; 91:155-63. [PMID: 22902527 DOI: 10.1016/j.mimet.2012.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022]
Abstract
Fungal vacuoles are involved in a diverse range of cellular functions, participating in cellular homeostasis, degradation of intracellular components, and storage of ions and molecules. In recent years there has been a significant increase in the number of studies linking these organelles with the regulation of growth and control of cellular morphology, particularly in those fungal species able to undergo yeast-hypha morphogenetic transitions. This has contributed to the refinement of previously published protocols and the development of new techniques, particularly in the area of live-cell imaging of membrane trafficking events and vacuolar dynamics. The current review outlines recent advances in the imaging of fungal vacuoles and assays for characterization of trafficking pathways, and other physiological activities of this important cell organelle.
Collapse
Affiliation(s)
- Andrea Richards
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | |
Collapse
|
49
|
Zieger M, Mayer A. Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol Biol Cell 2012; 23:3438-49. [PMID: 22787281 PMCID: PMC3431934 DOI: 10.1091/mbc.e12-05-0347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.
Collapse
Affiliation(s)
- Martin Zieger
- Département de Biochimie, Université de Lausanne, 1066 Epalinges, Switzerland
| | | |
Collapse
|
50
|
Abstract
For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided insights into the essence of these metabolic changes at unprecedented temporal resolution. Some of these mechanisms by which cell growth and proliferation are coordinated with metabolism are likely to be conserved in multicellular organisms. An improved understanding of the metabolic basis of cell cycle control promises to reveal fundamental principles governing tumorigenesis, metazoan development, niche expansion, and many additional aspects of cell and organismal growth control.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
| | | |
Collapse
|