1
|
Abdelrahman M, Liu G, Al-Saeed FA, Liu Y, Hou F, Yang H, Farooq U, Ahmed S, Jiang X. Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine. Vet Res Commun 2025; 49:72. [PMID: 39798032 DOI: 10.1007/s11259-025-10646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption. Accordingly, the immunity transfer can be delineated in two stages: the initial stage, which occurs on the maternal side (colostrogenesis serves as the primary immunoglobulin source), and the subsequent stage, which appears on the newborn side (the gut closure). The interval between the two stages is of great consequence, influencing the extent of immunity absorption and, thus, the newborn's health outcomes. The dual-phase (maternal-neonatal) process of immunity transport intersects with numerous factors, including cellular receptors such as the neonatal Fc receptor (FcRn), endocrine factors, physiological cellular phenomena (such as the blood-milk barrier), and environmental circumstances. However, no previous discussions have investigated the immunity transfer to neonatal health, nor have they discussed both sides. This gap highlights the necessity for further investigation into the time-dependent process, which can be described as a race against time to transfer adequate immunity (in quantity and quality) to neonates. Accordingly, the review encompasses a comprehensive analysis of immunological studies, from their foundational stages to the latest molecular research conducted on various mammalian species. This review aims to discern patterns and draw comparisons that advance our understanding of the complex interplay between colostral immunity transfers from diverse view points, including veterinary science and immunology.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut, 71515, Egypt.
| | - Guiqiong Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Yongbin Liu
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fuqing Hou
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Umar Farooq
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sohail Ahmed
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China.
- Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
2
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
3
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 PMCID: PMC11659946 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| | - Falk Nimmerjahn
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
4
|
Khaimraj A, Baehr CA, Hicks D, Raleigh MD, Pravetoni M. Monoclonal Antibodies Engineered with Fc Region Mutations to Extend Protection against Fentanyl Toxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:663-668. [PMID: 39018496 PMCID: PMC11333160 DOI: 10.4049/jimmunol.2400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Fentanyl and other synthetic opioids are the leading cause of drug-related deaths in the United States. mAbs that selectively target fentanyl and fentanyl analogues offer a promising strategy for treating both opioid-related overdoses and opioid use disorders. To increase the duration of efficacy of a candidate mAb against fentanyl, we selected three sets of mutations in the Fc region of an IgG1 anti-fentanyl mAb (HY6-F9DF215, HY6-F9DHS, HY6-F9YTE) to increase binding to the neonatal Fc receptor (FcRn). The mAb mutants were compared against unmodified (wild-type [WT], HY6-F9WT) anti-fentanyl mAb for fentanyl binding, thermal stability, and FcRn affinity in vitro, and for efficacy against fentanyl and mAb half-life in vivo in mice. Biolayer interferometry showed a >10-fold increase in the affinity for recombinant FcRn of the three mutant mAbs compared with HY6-F9WT. During an acute fentanyl challenge in mice, all FcRn-mutated mAbs provided equal protection against fentanyl-induced effects, and all mAbs reduced brain fentanyl levels compared with the saline group. Serum persistence of the mutant mAbs was tested in Tg276 transgenic mice expressing human FcRn. After administration of 40 mg/kg HY6-F9WT, HY6-F9DF215, HY6-F9DHS, and HY6-F9YTE, the mAbs showed half-lives of 6.3, 26.4, 14.7, and 6.9 d, respectively. These data suggest that modification of mAbs against fentanyl to bind to FcRn with higher affinity can increase their half-life relative to WT mAbs while maintaining efficacy against the toxic effects of fentanyl, further supporting their potential role as a therapeutic treatment option for opioid use disorder and overdose.
Collapse
Affiliation(s)
- Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly A. Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Michael D. Raleigh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington, University of Washington Center for Medication Development for Substance Use Disorders, Garvey Institute for Brain Solutions, Seattle, WA
| |
Collapse
|
5
|
Park SA, Lee Y, Hwang H, Lee JH, Kang YJ, Kim Y, Jin C, An HJ, Oh YJ, Hinterdorfer P, Kim E, Choi S, Ko K. Fc engineered anti-virus therapeutic human IgG 1 expressed in plants with altered binding to the neonatal Fc receptor. Biotechnol J 2024; 19:e2300552. [PMID: 38528347 DOI: 10.1002/biot.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024]
Abstract
Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.
Collapse
Affiliation(s)
- Sol-Ah Park
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyunjoo Hwang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jeong Hwan Lee
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yang Joo Kang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yerin Kim
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Caiquan Jin
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Yoo Jin Oh
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Eunhye Kim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kisung Ko
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| |
Collapse
|
6
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
7
|
Booler H, DeLise AM, Nimz E, Shefchek D, Luetjens CM. Intravitreal RTH258 (brolucizumab) demonstrates no effect on pregnancy, parturition, embryofetal or postnatal development in cynomolgus monkeys. Reprod Toxicol 2023; 121:108468. [PMID: 37666285 DOI: 10.1016/j.reprotox.2023.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
RTH258 (brolucizumab) is a humanized single chain antibody fragment, the smallest functional unit of an antibody designed to target vascular endothelial growth factor in angiogenic retinal disease. To further understand the safe use of RTH258, this study assessed the potential impact of intravitreal RTH258 on pre- and postnatal development in the offspring of cynomolgus monkeys following administration to the mother. Three groups of 16 pregnant females were included: a low dose group (RTH258 3 mg/50 µl [60 mg/ml]), a high dose group (RTH258 6 mg/50 µl [120 mg/ml]), and a control group. Maternal animals were administered a single injection of 50 µl in the right eye once every four weeks. Animals were observed daily and detailed observations were collected before and after the first dose, and then weekly thereafter. Following parturition, observations of infants included external, morphological, and ophthalmic examinations; neurobehavioral test battery; grip strength; and skeletal development. Blood samples for hematology, coagulation, and clinical chemistry were collected from non-fasted maternal and infant animals. No RTH258-related deaths occurred in maternal dams or infants. No RTH258-related clinical observations were noted in maternal animals or in surviving infants - there were no changes in gestation length; pregnancy loss; deaths; body weight/weight change; infant grip strength; infant external, morphological, or skeletal evaluations; ophthalmoscopy or neurobehavioral observations; or clinical pathology parameters. RTH258 had no impact on pregnancy or parturition; embryo-fetal development; or survival, growth, or postnatal development of offspring when administered via repeated intravitreal administration.
Collapse
Affiliation(s)
| | | | - Erik Nimz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | |
Collapse
|
8
|
Yu X, Wax J, Riemekasten G, Petersen F. Functional autoantibodies: Definition, mechanisms, origin and contributions to autoimmune and non-autoimmune disorders. Autoimmun Rev 2023; 22:103386. [PMID: 37352904 DOI: 10.1016/j.autrev.2023.103386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
A growing body of evidence underscores the relevance of functional autoantibodies in the development of various pathogenic conditions but also in the regulation of homeostasis. However, the definition of functional autoantibodies varies among studies and a comprehensive overview on this emerging topic is missing. Here, we do not only explain functional autoantibodies but also summarize the mechanisms underlying the effect of such autoantibodies including receptor activation or blockade, induction of receptor internalization, neutralization of ligands or other soluble extracellular antigens, and disruption of protein-protein interactions. In addition, in this review article we discuss potential triggers of production of functional autoantibodies, including infections, immune deficiency and tumor development. Finally, we describe the contribution of functional autoantibodies to autoimmune diseases including autoimmune thyroid diseases, myasthenia gravis, autoimmune pulmonary alveolar proteinosis, autoimmune autonomic ganglionopathy, pure red cell aplasia, autoimmune encephalitis, pemphigus, acquired thrombotic thrombocytopenic purpura, idiopathic dilated cardiomyopathy and systemic sclerosis, as well as non-autoimmune disorders such as allograft rejection, infectious diseases and asthma.
Collapse
Affiliation(s)
- Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany.
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, 23538 Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
9
|
Petty A, Glass LJ, Rothmond DA, Purves-Tyson T, Sweeney A, Kondo Y, Kubo S, Matsumoto M, Weickert CS. Increased levels of a pro-inflammatory IgG receptor in the midbrain of people with schizophrenia. J Neuroinflammation 2022; 19:188. [PMID: 35841099 PMCID: PMC9287858 DOI: 10.1186/s12974-022-02541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is growing evidence that neuroinflammation may contribute to schizophrenia neuropathology. Elevated pro-inflammatory cytokines are evident in the midbrain from schizophrenia subjects, findings that are driven by a subgroup of patients, characterised as a "high inflammation" biotype. Cytokines trigger the release of antibodies, of which immunoglobulin G (IgG) is the most common. The level and function of IgG is regulated by its transporter (FcGRT) and by pro-inflammatory IgG receptors (including FcGR3A) in balance with the anti-inflammatory IgG receptor FcGR2B. Testing whether abnormalities in IgG activity contribute to the neuroinflammatory abnormalities schizophrenia patients, particularly those with elevated cytokines, may help identify novel treatment targets. METHODS Post-mortem midbrain tissue from healthy controls and schizophrenia cases (n = 58 total) was used to determine the localisation and abundance of IgG and IgG transporters and receptors in the midbrain of healthy controls and schizophrenia patients. Protein levels of IgG and FcGRT were quantified using western blot, and gene transcript levels of FcGRT, FcGR3A and FcGR2B were assessed using qPCR. The distribution of IgG in the midbrain was assessed using immunohistochemistry and immunofluorescence. Results were compared between diagnostic (schizophrenia vs control) and inflammatory (high vs low inflammation) groups. RESULTS We found that IgG and FcGRT protein abundance (relative to β-actin) was unchanged in people with schizophrenia compared with controls irrespective of inflammatory subtype. In contrast, FcGRT and FcGR3A mRNA levels were elevated in the midbrain from "high inflammation" schizophrenia cases (FcGRT; p = 0.02, FcGR3A; p < 0.0001) in comparison to low-inflammation patients and healthy controls, while FcGR2B mRNA levels were unchanged. IgG immunoreactivity was evident in the midbrain, and approximately 24% of all individuals (control subjects and schizophrenia cases) showed diffusion of IgG from blood vessels into the brain. However, the intensity and distribution of IgG was comparable across schizophrenia cases and control subjects. CONCLUSION These findings suggest that an increase in the pro-inflammatory Fcγ receptor FcGR3A, rather than an overall increase in IgG levels, contribute to midbrain neuroinflammation in schizophrenia patients. However, more precise information about IgG-Fcγ receptor interactions is needed to determine their potential role in schizophrenia neuropathology.
Collapse
Affiliation(s)
- A Petty
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - L J Glass
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- Centre for Immunology and Allergy Research, Westmead Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - D A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - T Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A Sweeney
- NSW Brain Tissue Resource Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Y Kondo
- Astellas Research Institute of America LLC, San Diego, CA, 92121, USA
| | - S Kubo
- Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - M Matsumoto
- Astellas Research Institute of America LLC, San Diego, CA, 92121, USA
| | - C Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Gill KL, Jones HM. Opportunities and Challenges for PBPK Model of mAbs in Paediatrics and Pregnancy. AAPS J 2022; 24:72. [PMID: 35650328 DOI: 10.1208/s12248-022-00722-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
New drugs may in some cases need to be tested in paediatric and pregnant patients. However, it is difficult to recruit such patients and there are many ethical issues around their inclusion in clinical trials. Modelling and simulation can help to plan well-designed clinical trials with a reduced number of participants and to bridge gaps where recruitment is difficult. Physiologically based pharmacokinetic (PBPK) models for small molecule drugs have been used to aid study design and dose adjustments in paediatrics and pregnancy, with several publications in the literature. However, published PBPK models for monoclonal antibodies (mAb) in these populations are scarce. Here, the current status of mAb PBPK models in paediatrics and pregnancy is discussed. Seven mAb PBPK models published for paediatrics were found, which report good prediction accuracy across a wide age range. No mAb PBPK models for pregnant women have been published to date. Current challenges to the development of such PBPK models are discussed, including gaps in our knowledge of relevant physiological processes and availability of clinical data to verify models. As the availability of such data increases, it will help to improve our confidence in the PBPK model predictive ability. Advantages for using PBPK models to predict mAb PK in paediatrics and pregnancy are discussed. For example, the ability to incorporate ontogeny and gestational changes in physiology, prediction of maternal, placental and foetal exposure and the ability to make predictions from in vitro and preclinical data prior to clinical data being available.
Collapse
Affiliation(s)
- Katherine L Gill
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | - Hannah M Jones
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
11
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
12
|
Delidakis G, Kim JE, George K, Georgiou G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu Rev Biomed Eng 2022; 24:249-274. [PMID: 35363537 PMCID: PMC9648538 DOI: 10.1146/annurev-bioeng-082721-024500] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Katia George
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Lee T, Kim JH, Kwon SJ, Seo JW, Park SH, Kim J, Jin J, Hong JH, Kang HJ, Sharma C, Choi JH, Chung SJ. Site-Selective Antibody-Drug Conjugation by a Proximity-Driven S to N Acyl Transfer Reaction on a Therapeutic Antibody. J Med Chem 2022; 65:5751-5759. [PMID: 35319890 DOI: 10.1021/acs.jmedchem.2c00084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunoglobulin Gs (IgGs) contain many Lys and Cys residues, which results in an unwanted complex product mixture with conventional drug conjugation methods. We selectively acylated the ε-NH2 of K248 on trastuzumab using an IgG Fc-binding peptide (FcBP) equipped with a 5-norbornene-2-carboxylic acid thioester (AbClick-1). AbClick-1 locates its thioester close to the ε-NH2 of K248 while binding to trastuzumab. Consequently, the thioester underwent proximity-driven selective acylation of ε-NH2 through an S to N acyl transfer reaction. Furthermore, N-tert-butyl maleimide accelerated the cross-linking reaction with an approximately 95% yield of the desired product by scavenging the byproduct (FcBP-SH). Only K248 was modified selectively with the 5-norbornene-2-carbonyl group, which was further modified by click reaction to afford an antibody-drug conjugate (ADC) with two drugs per antibody. The resulting ADCs showed remarkable in vitro and in vivo anticancer activity. Our results demonstrate that a thioester is a promising chemical entity for proximity-driven site-selective conjugation of antibodies.
Collapse
Affiliation(s)
- TaeJin Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Ju Hwan Kim
- AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Se Jeong Kwon
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Jin Woo Seo
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Sun Hee Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Jinyoung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Jonghwa Jin
- Department of Convergence Technical Support, New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Hye Hong
- Department of Convergence Technical Support, New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hyo Jin Kang
- AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea
| | - Chiranjeev Sharma
- Department of Biopharmaceutical Convergence, Graduate School, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| | - Ji Hoon Choi
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea.,AbTis Company Ltd., A-815, Suwon Venture Valley II, 142-10, Saneop-ro156beon-gil, Gwonseon-gu, Suwon, Gyeonggi-do 16648, Republic of Korea.,Department of Biopharmaceutical Convergence, Graduate School, Sungkyunkwan University, 2066 Seoburo, Jangangu, Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Trofin F, Nastase EV, Iancu LS, Constantinescu D, Cianga CM, Lunca C, Ursu RG, Cianga P, Dorneanu OS. Anti-RBD IgA and IgG Response and Transmission in Breast Milk of Anti-SARS-CoV-2 Vaccinated Mothers. Pathogens 2022; 11:286. [PMID: 35335610 PMCID: PMC8952534 DOI: 10.3390/pathogens11030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
The appearance of the severe acute respiratory syndrome virus-2 (SARS-CoV-2) has had a significant impact on the balance of public health and social life. The data available so far show that newborns and young children do not develop severe forms of COVID-19, but a small proportion of them will still need hospitalization. Even though young children represent an important vector of the infection, vaccination at such a young age was not yet considered. Thus, the question of whether potentially protective antibodies against SARS-CoV-2 could be provided to them via breast milk or across the placenta, as "passive immunity", still stands. MATERIALS AND METHODS Between January-July 2021, we have conducted a prospective study that aimed to measure the immunoglobulin (Ig) A and IgG anti-SARS-CoV-2 titers in the breast milk of 28 vaccinated lactating mothers, sampled at 30 and 60 days after the second dose of the anti-SARS-CoV-2 Pfizer or Moderna mRNA vaccines. Anti-RBD reactive IgA and IgG antibodies were detected and quantified by a sandwich enzyme-linked immunosorbent assay. RESULTS Anti-RBD IgA and IgG were present in all breast milk samples, both in the first and in the second specimens, without a significant difference between those two. The anti-RBD IgA titers were approximately five-times higher than the anti-RBD IgG ones. The anti-RBD IgA and IgG titers were correlated with the infants' age, but they were not correlated with the vaccine type or mother's age. The anti-RBD IgA excreted in milk were inversely correlated with the parity number. CONCLUSIONS Anti-SARS-CoV-2 IgA and IgG can be found in the milk secretion of mothers vaccinated with mRNA vaccines and, presumably, these antibodies should offer protection to the newborn, considering that the antibodies' titers did not decrease after 60 days. The antibody response is directly proportional to the breastfed child's age, but the amount of anti-RBD IgA decreases with the baby's rank. The antibody response did not depend on the vaccine type, or on the mother's age.
Collapse
Affiliation(s)
- Felicia Trofin
- Microbiology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (F.T.); (C.L.); (R.G.U.); (O.S.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Infectious Diseases Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Luminita Smaranda Iancu
- Microbiology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (F.T.); (C.L.); (R.G.U.); (O.S.D.)
- National Institute of Public Health, Iasi Regional Center for Public Health, 700465 Iasi, Romania
| | - Daniela Constantinescu
- Immunology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (D.C.); (C.M.C.)
- Immunology Laboratory, “Sf. Spiridon” Clinical Hospital, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Immunology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (D.C.); (C.M.C.)
- Immunology Laboratory, “Sf. Spiridon” Clinical Hospital, 700111 Iasi, Romania
| | - Catalina Lunca
- Microbiology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (F.T.); (C.L.); (R.G.U.); (O.S.D.)
- National Institute of Public Health, Iasi Regional Center for Public Health, 700465 Iasi, Romania
| | - Ramona Gabriela Ursu
- Microbiology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (F.T.); (C.L.); (R.G.U.); (O.S.D.)
| | - Petru Cianga
- Immunology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (D.C.); (C.M.C.)
- Immunology Laboratory, “Sf. Spiridon” Clinical Hospital, 700111 Iasi, Romania
| | - Olivia Simona Dorneanu
- Microbiology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (F.T.); (C.L.); (R.G.U.); (O.S.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| |
Collapse
|
15
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
16
|
Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 2021; 26:419-453. [PMID: 35080749 DOI: 10.1007/s10911-021-09506-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins' long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.
Collapse
Affiliation(s)
- Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA.
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
| | - Ann L Macrina
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
17
|
Gstöttner C, Hook M, Christopeit T, Knaupp A, Schlothauer T, Reusch D, Haberger M, Wuhrer M, Domínguez-Vega E. Affinity Capillary Electrophoresis-Mass Spectrometry as a Tool to Unravel Proteoform-Specific Antibody-Receptor Interactions. Anal Chem 2021; 93:15133-15141. [PMID: 34739220 PMCID: PMC8600502 DOI: 10.1021/acs.analchem.1c03560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoclonal antibody (mAb) pharmaceuticals consist of a plethora of different proteoforms with different functional characteristics, including pharmacokinetics and pharmacodynamics, requiring their individual assessment. Current binding techniques do not distinguish between coexisting proteoforms requiring tedious production of enriched proteoforms. Here, we have developed an approach based on mobility shift-affinity capillary electrophoresis-mass spectrometry (ACE-MS), which permitted us to determine the binding of coexisting mAb proteoforms to Fc receptors (FcRs). For high-sensitivity MS analysis, we used a sheathless interface providing adequate mAb sensitivity allowing functional characterization of mAbs with a high sensitivity and dynamic range. As a model system, we focused on the interaction with the neonatal FcR (FcRn), which determines the half-life of mAbs. Depending on the oxidation status, proteoforms exhibited different electrophoretic mobility shifts in the presence of FcRn, which could be used to determine their affinity. We confirmed the decrease of the FcRn affinity with antibody oxidation and observed a minor glycosylation effect, with higher affinities for galactosylated glycoforms. Next to relative binding, the approach permits the determination of individual KD values in solution resulting in values of 422 and 139 nM for double-oxidized and non-oxidized variants. Hyphenation with native MS provides unique capabilities for simultaneous heterogeneity assessment for mAbs, FcRn, and complexes formed. The latter provides information on binding stoichiometry revealing 1:1 and 1:2 for antibody/FcRn complexes. The use of differently engineered Fc-only constructs allowed distinguishing between symmetric and asymmetric binding. The approach opens up unique possibilities for proteoform-resolved antibody binding studies to FcRn and can be extended to other FcRs and protein interactions.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Michaela Hook
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Tony Christopeit
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| |
Collapse
|
18
|
Song Y, Deng X, Shi W, Tang F, Huang W, Gong L, Qin Q. A homogeneous time-resolved fluorometric energy transfer assay for the binding assessment of FcRn with IgG antibodies. J Immunol Methods 2021; 499:113180. [PMID: 34736962 DOI: 10.1016/j.jim.2021.113180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
We aimed to develop a homogeneous time-resolved fluorometric energy transfer assay for assessment of human neonatal Fc receptor binding activity with IgG-type antibodies. The assay was configured with FcRn-coupled with Eu cryptate via biotin and streptavidin interaction as donor and IgG1 labeled with d2 as acceptor. Only a single incubation step was involved and no wash step was required. The assay demonstrated good accuracy, precision, linearity and specificity. Our further investigation with a rat pharmacokinetics study revealed that the terminal t1/2 for Trastuzumab and its related three ADCs agreed with the EC50 data. The assay can be applied to various IgGs with modifications to identify antibodies with appropriate binding ability to human FcRn.
Collapse
Affiliation(s)
- Yakai Song
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China
| | - Xiaojie Deng
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Likun Gong
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China.
| | - Qiuping Qin
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China.
| |
Collapse
|
19
|
Brücher D, Franc V, Smith SN, Heck AJR, Plückthun A. Malignant tissues produce divergent antibody glycosylation of relevance for cancer gene therapy effectiveness. MAbs 2021; 12:1792084. [PMID: 32643525 PMCID: PMC7531505 DOI: 10.1080/19420862.2020.1792084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene therapy approaches now allow for the production of therapeutic antibodies by healthy or cancerous human tissues directly in vivo, and, with an increasing number of gene delivery methods available, the cell type for expression can be chosen. Yet, little is known about the biophysical changes introduced by expressing antibodies from producer cells or tissues targeted by gene therapy approaches, nor about the consequences for the type of glycosylation. The effects of different glycosylation on therapeutic antibodies have been well studied by controlling their glycan compositions in non-human mammalian production cells, i.e., Chinese hamster ovary cells. Therefore, we investigated the glycosylation state of clinically approved antibodies secreted from cancer tissues frequently targeted by in vivo gene therapy, using native mass spectrometry and glycoproteomics. We found that antibody sialylation and fucosylation depended on the producer tissue and the antibody isotype, allowing us to identify optimal producer cell types according to the desired mode of action of the antibody. Furthermore, we discovered that high amounts (>20%) of non-glycosylated antibodies were produced in cells sensitive to the action of the produced antibodies. Different glycosylation in different producer cells can translate into an altered potency of in-vivo produced antibodies, depending on the desired mode of action, and can affect their serum half-lives. These results increase our knowledge about antibodies produced from cells targeted by gene therapy, enabling development of improved cancer gene therapy vectors that can include in vivo glycoengineering of expressed antibodies to optimize their efficacies, depending on the desired mode of action.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Sheena N Smith
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht, The Netherlands.,Netherlands Proteomics Center , Utrecht, The Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich , Zurich, Switzerland
| |
Collapse
|
20
|
Qian S, Li C, Liu X, Jia X, Xiao Y, Li Z. Activation of the JNK/MAPK Signaling Pathway by TGF-β1 Enhances Neonatal Fc Receptor Expression and IgG Transcytosis. Microorganisms 2021; 9:879. [PMID: 33923917 PMCID: PMC8073669 DOI: 10.3390/microorganisms9040879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023] Open
Abstract
The neonatal Fc receptor (FcRn) transports maternal immunoglobulin G (IgG) to the foetus or newborn and protects the IgG from degradation. FcRn is expressed in several porcine tissues and cell types and its expression levels are regulated by immune and inflammatory events. IPEC-J2 cells are porcine intestinal columnar epithelial cells that were isolated from neonatal piglet mid-jejunum. We hypothesized that transforming growth factor β1 (TGF-β1) upregulated pFcRn expression in IPEC-J2 cells. To test this hypothesis, we treated IPEC-J2 cells with TGF-β1 and demonstrated that porcine FcRn (pFcRn) expression was significantly increased. SP600125, a specific mitogen-activated protein kinase (MAPK) inhibitor, reduced TGF-β1-induced pFcRn expression in IPEC-J2 cells. We performed luciferase reporter assays and showed that the c-JUN sensitive region of the pFcRn promoter gene was located between positions -1215 and -140. The c-JUN sequence, in combination with the pFcRn promoter, regulated luciferase reporter activity in response to TGF-β1 stimulation. Chromatin immunoprecipitation confirmed that there were three c-JUN binding sites in the pFcRn promoter. Furthermore, in addition to increased pFcRn expression, TGF-β1 also enhanced IgG transcytosis in IPEC-J2 cells. In summary, our data showed that the modulation of JNK/MAPK signaling by TGF-β1 was sufficient to upregulate pFcRn expression.
Collapse
Affiliation(s)
- Shaoju Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
| | - Chenxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
| | - Xi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.Q.); (C.L.); (X.L.); (X.J.); (Y.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
21
|
Domnowski M, Lo Presti K, Binder J, Reindl J, Lehmann L, Kummer F, Wolber M, Satzger M, Dehling M, Jaehrling J, Frieß W. Generation of mAb Variants with Less Attractive Self-Interaction but Preserved Target Binding by Well-Directed Mutation. Mol Pharm 2020; 18:236-245. [PMID: 33331157 DOI: 10.1021/acs.molpharmaceut.0c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strongly attractive self-interaction of therapeutic protein candidates can impose challenges for manufacturing, filling, stability, and administration due to elevated viscosity or aggregation propensity. Suitable formulations can mitigate these issues to a certain extent. Understanding the self-interaction mechanism on a molecular basis and rational protein engineering provides a more fundamental approach, and it can save costs and efforts as well as alleviate risks at later stages of development. In this study, we used computational methods for the identification of aggregation-prone regions in a mAb and generated mutants based on these findings. We applied hydrogen-deuterium exchange mass spectrometry to identify distinct self-interaction hot spots. Ultimately, we generated mAb variants based on a combination of both approaches and identified mutants with low attractive self-interaction propensity, minimal off-target binding, and even improved target binding. Our data show that the introduction of arginine in spatial proximity to hydrophobic patches is highly beneficial on all these levels. For our mAb, variants that contain more than one aspartate residue flanking to the hydrophobic HCDR3 show decreased attractive self-interaction at unaffected off-target and target binding. The combined engineering strategy described here underlines the high potential of understanding self-interaction in the early stages of development to predict and reduce the risk of failure in subsequent development.
Collapse
Affiliation(s)
- Martin Domnowski
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universitaet, Munich 81377, Germany.,MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Ken Lo Presti
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universitaet, Munich 81377, Germany
| | - Jonas Binder
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universitaet, Munich 81377, Germany
| | - Josef Reindl
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Lucille Lehmann
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Felix Kummer
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Meike Wolber
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Marion Satzger
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Marco Dehling
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Jan Jaehrling
- MorphoSys AG, Department of Protein Sciences (Research), Planegg 82152, Germany
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig Maximilians-Universitaet, Munich 81377, Germany
| |
Collapse
|
22
|
Kanemura S, Matsusaki M, Inaba K, Okumura M. PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci 2020; 21:ijms21249351. [PMID: 33302492 PMCID: PMC7763558 DOI: 10.3390/ijms21249351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.
Collapse
Affiliation(s)
- Shingo Kanemura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan;
| | - Motonori Matsusaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; (M.M.); (K.I.)
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Correspondence: ; Tel.: +81-22-217-5628
| |
Collapse
|
23
|
Critical Role of the Maternal Immune System in the Pathogenesis of Autism Spectrum Disorder. Biomedicines 2020; 8:biomedicines8120557. [PMID: 33271759 PMCID: PMC7760377 DOI: 10.3390/biomedicines8120557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterised by impairments in communication, social interaction, and the presence of restrictive and repetitive behaviours. Over the past decade, most of the research in ASD has focused on the contribution of genetics, with the identification of a variety of different genes and mutations. However, the vast heterogeneity in clinical presentations associated with this disorder suggests that environmental factors may be involved, acting as a “second hit” in already genetically susceptible individuals. To this regard, emerging evidence points towards a role for maternal immune system dysfunctions. This literature review considered evidence from epidemiological studies and aimed to discuss the pathological relevance of the maternal immune system in ASD by looking at the proposed mechanisms by which it alters the prenatal environment. In particular, this review focuses on the effects of maternal immune activation (MIA) by looking at foetal brain-reactive antibodies, cytokines and the microbiome. Despite the arguments presented here that strongly implicate MIA in the pathophysiology of ASD, further research is needed to fully understand the precise mechanisms by which they alter brain structure and behaviour. Overall, this review has not only shown the importance of the maternal immune system as a risk factor for ASD, but more importantly, has highlighted new promising pathways to target for the discovery of novel therapeutic interventions for the treatment of such a life-changing disorder.
Collapse
|
24
|
Fukuzawa T, Nezu J. SKY59, A Novel Recycling Antibody for Complement-mediated Diseases. Curr Med Chem 2020; 27:4157-4164. [PMID: 31622197 DOI: 10.2174/0929867326666191016115853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The complement system usually helps protect against microbial infection, but it could also be involved in the onset of various diseases. Inhibition of complement component 5 (C5) with eculizumab has resulted in a significant reduction of hemolysis, reduction of thromboembolic events, and increased survival in patients with Paroxysmal Nocturnal Hemoglobinuria (PNH). However, eculizumab requires frequent intravenous infusions due to the abundance of C5 in plasma and some patients may still experience breakthrough hemolysis. This review introduces the recent body of knowledge on recycling technology and discusses the likely therapeutic benefits of SKY59, a novel recycling antibody, for PNH and complement-mediated disorders. METHODS By using recycling technology, we created a novel anti-C5 antibody, SKY59, capable of binding to C5 pH-dependently. RESULTS In cynomolgus monkeys, SKY59 robustly inhibited C5 and complement activity for significantly longer than a conventional antibody. SKY59 also showed an inhibitory effect on C5 variant p.Arg885His, whereas eculizumab does not suppress complement activity in patients with this type of mutation. CONCLUSION SKY59 is a promising anti-C5 biologic agent that has significant advantages over current therapies such as long duration of action and efficacy against C5 variants.
Collapse
Affiliation(s)
- Taku Fukuzawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Junichi Nezu
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| |
Collapse
|
25
|
Implications of Fc Neonatal Receptor (FcRn) Manipulations for Transplant Immunotherapeutics. Transplantation 2020; 104:17-23. [PMID: 31397806 DOI: 10.1097/tp.0000000000002912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alloimmune injury to allografts is mediated by pathogenic donor-specific alloantibodies, usually of the IgG isotype. Currently, strategies used to reduce donor-specific alloantibodies are collectively called desensitization. Despite successes, these treatments have limited efficacy and can be associated with adverse events, infectious complications, and high cost. Fc neonatal receptor (FcRn) was originally discovered as a transport mechanism for IgG from maternal circulation to fetus. FcRn receptors are now known to be widely distributed in virtually all tissues. IgG and albumin binding to FcRn is pH-dependent, which results in a significant prolongation their half-life. Structural analysis shows FcRn is a nonclassical major histocompatibility complex Class I receptor, which is emerging as a novel target to significantly reduce the half-life of pathogenic antibodies or extend the half-life of therapeutic monoclonals. Manipulation of IgG-Fc/FcRn interactions has implications for treatment of virtually all IgG-mediated diseases. The use of monoclonals directed at the FcRn can rapidly enhance the turnover of total IgG, including pathogenic IgG. In this review, we highlight the aspects of FcRn biology responsible for development of FcRn targeted therapeutics aimed at pathogenic autoantibodies and alloantibodies. We also explore the novel modifications of therapeutic monoclonals that exploit FcRn functions to enhance therapeutic efficacy.
Collapse
|
26
|
Abstract
INTRODUCTION A number of new FVIII/IX concentrates enriched the portfolio of products available for the treatment of hemophilia A/B patients. Due to the large inter-patient variability, accurate tailoring of the therapy became essential to improve patients' adherence, clinical outcomes, and cost/effectiveness ratio. Recently, non-replacement therapies have taken the limelight and succeeded in decreasing the bleedings of patients. AREAS COVERED The PK characteristics, efficacy, and safety of the new rFVIII and rFIX concentrates and of non-replacement therapy, are reported in detail in the published clinical trials. EXPERT OPINION Outstanding improvements of rFIX concentrates' pharmacokinetics and pharmacodynamics have allowed to reduce the bleedings in hemophilia B patients, in order to increase their adherence to prophylaxis and quality of life. Less significant are the effects of pegylation or Fc fusion on the pharmacokinetics of the new rFVIII concentrates. The new non-replacement therapy is achieving the favor of many treaters and patients, in particular those with Factor VIII inhibitors. Great attention must be paid to the dangerous synergy of APCC and emicizumab, responsible for some fatal events during the clinical trials and compassionate use of this drug. So far, replacement therapy should be the standard of care for hemophilia patients without inhibitors or difficulties in venous access.
Collapse
Affiliation(s)
- Massimo Morfini
- Italian Association of Hemophilia Centres (AICE) , Milan, Italy
| | - Emanuela Marchesini
- Hemophilia Centre - SC Vascular and Emergency Department, University of Perugia , Perugia, Italy
| |
Collapse
|
27
|
FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proc Natl Acad Sci U S A 2020; 117:12943-12951. [PMID: 32461366 DOI: 10.1073/pnas.2004325117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation. To determine the contribution of FcγRs and FcRn to the maternal-fetal transport of IgG, we characterized the IgG Fc glycosylation in paired maternal-fetal samples from patient cohorts from Uganda and Nicaragua. No differences in IgG1 Fc glycan profiles and minimal differences in IgG2 Fc glycans were noted, whereas the presence or absence of galactose on the Fc glycan of IgG1 did not alter FcγRIIIa or FcRn binding, half-life, or their ability to deplete target cells in FcγR/FcRn humanized mice. Modeling maternal-fetal transport in FcγR/FcRn humanized mice confirmed that only FcRn contributed to transplacental transport of IgG; IgG selectively enhanced for FcRn binding resulted in enhanced accumulation of maternal antibody in the fetus. In contrast, enhancing FcγRIIIa binding did not result in enhanced maternal-fetal transport. These results argue against a role for FcγRs in IgG transplacental transport, suggesting Fc engineering of maternally administered antibody to enhance only FcRn binding as a means to improve maternal-fetal transport of IgG.
Collapse
|
28
|
Lim YY, Lim TS, Choong YS. Human IgG1 Fc pH-dependent optimization from a constant pH molecular dynamics simulation analysis. RSC Adv 2020; 10:13066-13075. [PMID: 35492131 PMCID: PMC9051383 DOI: 10.1039/c9ra10712f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The binding of IgG Fc with FcRn enables the long circulating half-life of IgG, where the Fc–FcRn complex interacts in a pH-dependent manner. This complex shows stronger interaction at pH ≤ 6.5 and weaker interaction at pH ≥ 7.4. The Fc–FcRn binding mechanism that promotes the long circulating half-life of IgG has prompted several IgG Fc-related mutational studies to focus on the pH-dependent Fc–FcRn complex interactions in order to improve the pharmacokinetic properties of Fc. Hence, in this study, we applied the in silico constant pH molecular dynamics (CpHMD) simulation approach to evaluate the human Fc–FcRn complex binding (pH 6.0) and dissociating (pH 7.5) mechanism at the molecular level. The analysis showed that the protonated state of the titratable residues changes from pH 6.0 to pH 7.5, where the disrupting energy for Fc–FcRn complex formation was found to be due to the electrostatic repulsion between the complex. According to the analysis, an Fc variant was computationally designed with an improved binding affinity at pH 6.0, which is still able to dissociate at pH 7.5 with FcRn at the in silico level. The binding free energy calculation via the MMPB/GBSA approach showed that the designed Fc mutant (MutM4) has increased binding affinity only at pH 6.0 compared with the reported mutant (YTE) Fc. This work demonstrates an alternative Fc design with better binding properties for FcRn, which can be useful for future experimental evaluation and validation. An in silico IgG-Fc variant with better affinity at pH 6.0 but retained the dissociation at pH 7.5 was designed.![]()
Collapse
Affiliation(s)
- Yee Ying Lim
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| |
Collapse
|
29
|
Varkhede N, Bommana R, Schöneich C, Forrest ML. Proteolysis and Oxidation of Therapeutic Proteins After Intradermal or Subcutaneous Administration. J Pharm Sci 2020; 109:191-205. [PMID: 31408633 PMCID: PMC6937400 DOI: 10.1016/j.xphs.2019.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
The intradermal (ID) and subcutaneous (SC) routes are commonly used for therapeutic proteins (TPs) and vaccines; however, the bioavailability of TPs is typically less than small molecule drugs given via the same routes. Proteolytic enzymes in the dermal, SC, and lymphatic tissues may be responsible for the loss of TPs. In addition, the TPs may be exposed to reactive oxygen species generated in the SC tissue and the lymphatic system in response to injection-related trauma and impurities within the formulation. The reactive oxygen species can oxidize TPs to alter their efficacy and immunogenicity potential. Mechanistic understandings of the dominant proteolysis and oxidative routes are useful in the drug discovery process, formulation development, and to assess the potential for immunogenicity and altered pharmacokinetics (PK). Furthermore, in vitro tools representing the ID or SC and lymphatic system can be used to evaluate the extent of proteolysis of the TPs after the injection and before systemic entry. The in vitro clearance data may be included in physiologically based pharmacokinetic models for improved PK predictions. In this review, we have summarized various physiological factors responsible for proteolysis and oxidation of TPs after ID and SC administration.
Collapse
Affiliation(s)
- Ninad Varkhede
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Rupesh Bommana
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; MedImmune, Gaithersburg, Maryland 20878
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
30
|
Salem R, Assem SK, Omar OA, Khalil AA, Basry MA, Waly FR, Samir N, El-Kholy AA. Expressing the immunodominant projection domain of infectious bursal disease virus fused to the fragment crystallizable of chicken IgY in yellow maize for a prospective edible vaccine. Mol Immunol 2019; 118:132-141. [PMID: 31881424 DOI: 10.1016/j.molimm.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Control of Infectious bursal disease virus (IBDV) in endemic countries has been based on early immunization of chicks using conventional live or inactivated vaccines that became not fully effectual and have biosafety concerns. This endeavor seeks generating a recombinant chimeric protein merging the projection domain (PD) of IBDV VP2 capsid with the fragment crystallizable (Fc) of avian IgY (FcIgY), in maize as a prospective poultry edible vaccine. The PD sequence was built on the basis of very virulent IBDV isolates circulating in Egypt. After optimization of codon-usage in maize, sequences of PD and FcIgY were effectively expressed in two elites of yellow maize via bombardment transformation in immature embryos. Chimeric protein amount in stable transgenic samples ranged from1.36% to 3.03% of the total soluble protein based on tissue age and maize cultivar. IBDV VP2 coding sequence was amplified from viral RNA, cloned, and expressed in E. coli. A group of Balb/C mice were hyper-immunized with purified recombinant VP2 protein for raising anti- recombinant VP2 antibodies (anti-rVP2 Ab). Proper expression in maize and immunoreactivity of the chimeric protein (PD-FcIgY) to chicken anti- IBDV and anti-rVP2 Ab were confirmed by both direct and indirect double antibody sandwich (DAS)-ELISAs as well as western blotting. Seeds of regenerated transgenic maize will be validated for chickens as edible vaccination in further studies.
Collapse
Affiliation(s)
- Reda Salem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt.
| | - Shireen K Assem
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Omar A Omar
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Ahmed A Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box #131, 11381, Cairo, Egypt
| | - Mahmoud A Basry
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Fatma R Waly
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Noha Samir
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, 12619, Giza, Egypt
| | - Alaa A El-Kholy
- Veterinary Sera and Vaccines Research Institute (VSVRI), ARC, Abbassia, P.O. Box #131, 11381, Cairo, Egypt
| |
Collapse
|
31
|
Catlin NR, Mitchell AZ, Potchoiba MJ, O'Hara DM, Wang M, Zhang M, Weinbauer GF, Bowman CJ. Placental transfer of 125 iodinated humanized immunoglobulin G2Δa in the cynomolgus monkey. Birth Defects Res 2019; 112:105-117. [PMID: 31746560 DOI: 10.1002/bdr2.1615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022]
Abstract
Antibody-like biopharmaceuticals cross the placenta by utilizing existing transport pathways (e.g., FcRn receptor). There are limited data evaluating this transfer during organogenesis in any species. Understanding placental transfer of antibody-like biopharmaceuticals can help to predict risk of developmental toxicity across species, including humans. To complement previously published placental transfer data in the rat with humanized IgGΔ2 (hIgG2), the timing and magnitude of transfer in the cynomolgus monkey and embryo/fetal biodistribution of maternally administered 125 I-radiolabeled hIgG2 was quantified on gestation days (GD) 35, 40, 50, 70, and 140 using gamma counting and whole body autoradiography 24 hr following intravenous injection. Chorioallantoic placental tissues were collected at all time points for Western Blot analysis with anti-FcRn antibody. Maternally administered 125 I-hIgG2 was found in embryo/fetal tissues at all time points, including organogenesis. Embryo/fetal plasma 125 I-hIgG2 concentration increased during gestation, but only slightly up to GD 70 in embryo/fetal tissues, with hIgG2 tissue concentrations generally similar between GD70 and 140. The embryo/fetal:maternal 125 I-hIgG2 plasma concentration ratio was approximately 2.3 fold higher on GD 140, in comparison to ratios on GD 40. Importantly, placental FcRn protein expression was confirmed at all timepoints. These data demonstrate placental transfer of hIgG2 in a nonhuman primate model, and at levels comparable to the rat model, raising the potential for adverse developmental outcomes by direct antibody binding to biological targets.
Collapse
|
32
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
33
|
Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G, Gillis CM, Sterlin D, Hardy D, Cogné M, Macdonald LE, Murphy AJ, Tu N, Lee J, McDaniel JR, Makowski E, Tessier PM, Meyer AS, Bruhns P, Georgiou G. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat Commun 2019; 10:5031. [PMID: 31695028 PMCID: PMC6834678 DOI: 10.1038/s41467-019-13108-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains. engineered specifically to recapitulate all the key processes relevant to human antibody persistence in circulation, namely: (i) physiological expression of hFcRn, (ii) the impact of hFcγRs on antibody clearance and (iii) the role of competing endogenous IgG. DHS-IgG retains intact effector functions, which are important for the clearance of target pathogenic cells and also has favorable developability.
Collapse
Affiliation(s)
- Chang-Han Lee
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Tae Hyun Kang
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Applied Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ophélie Godon
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Makiko Watanabe
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Caitlin M Gillis
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - Delphine Sterlin
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France
| | - David Hardy
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, 25, rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Naxin Tu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Emily Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERMF-75015, Paris, France.
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Bioscience, University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
34
|
Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model. Nat Commun 2019; 10:4432. [PMID: 31570755 PMCID: PMC6769004 DOI: 10.1038/s41467-019-12232-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
The pathway of homeostatic IgG extravasation is not fully understood, in spite of its importance for the maintenance of host immunity, the management of autoantibody-mediated disorders, and the use of antibody-based biologics. Here we show in a murine model of pemphigus, a prototypic cutaneous autoantibody-mediated disorder, that blood-circulating IgG extravasates into the skin in a time- and dose-dependent manner under homeostatic conditions. This IgG extravasation is unaffected by depletion of Fcγ receptors, but is largely attenuated by specific ablation of dynamin-dependent endocytic vesicle formation in blood endothelial cells (BECs). Among dynamin-dependent endocytic vesicles, IgG co-localizes well with caveolae in cultured BECs. An Abl family tyrosine kinase inhibitor imatinib, which reduces caveolae-mediated endocytosis, impairs IgG extravasation in the skin and attenuates the murine pemphigus manifestations. Our study highlights the kinetics of IgG extravasation in vivo, which might be a clue to understand the pathological mechanism of autoantibody-mediated autoimmune disorders. How antibody reaches tissues from circulation is critical for understanding antibody-mediated immunity. Here the authors show that IgG extravasation in the skin is mediated by endothelial caveolin transport independently of FcR, and is targetable by imatinib, which reduces IgG-dependent pathology in a mouse model of pemphigus.
Collapse
|
35
|
Mosley YYC, Radder JE, HogenEsch H. Genetic Variation in the Magnitude and Longevity of the IgG Subclass Response to a Diphtheria-Tetanus-Acellular Pertussis (DTaP) Vaccine in Mice. Vaccines (Basel) 2019; 7:E124. [PMID: 31547158 PMCID: PMC6963843 DOI: 10.3390/vaccines7040124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
The type of IgG subclasses induced by vaccination is an important determinant of vaccine efficacy because the IgG subclasses vary in their biological function. The goal of this study was to determine the influence of the genetic background on the production and duration of vaccine-induced IgG subclasses. IgG1, IgG2b, and IgG3 titers against diphtheria toxoid (DT), pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (Prn) were measured in mice from 28 different inbred and wild-derived strains vaccinated with an aluminum hydroxide-adjuvanted DTaP vaccine. The titers and duration of vaccine-specific IgG subclass responses were different among mouse strains, indicating that genetic factors contribute to this variation. Statistical associations were used to identify potential mechanisms that contribute to antibody production and longevity. This analysis showed that the mechanisms guiding the magnitude of antibody production were antigen-dependent for IgG1 but antigen-independent for IgG2b and IgG3. However, the mechanisms driving the longevity of antibody titers were antigen-independent for IgG1, IgG2b, and IgG3. The ratio of IgG1 and IgG3 titers identified Th1 and Th2-prone mouse strains. TLR4-deficient C3H/HeJ mice had an enhanced IgG1 response compared with C3H/HeOuJ mice with intact TLR4. This work demonstrates that the genetic background contributes significantly to the magnitude and longevity of vaccine-induced IgG1, IgG2b, and IgG3 titers in mice.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907 USA.
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907 USA.
- Purdue Institute of Inflammation, Immunology, and Infectious Diseases, Purdue University, Indiana Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
36
|
Methotrexate Reduces the Clearance of Adalimumab by Increasing the Concentration of Neonatal Fc Receptor in Tissues. Pharm Res 2019; 36:157. [PMID: 31493066 DOI: 10.1007/s11095-019-2696-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/01/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Although pharmacokinetic (PK) interaction effects of methotrexate (MTX) on adalimumab have been found, the mechanism of these effects is still unclear. In this work, effects of MTX on the concentration of neonatal Fc receptor (FcRn) and the role of FcRn in the interaction between MTX and adalimumab were investigated. METHODS The experiment was performed in rats whose FcRn had normal physiological function and also in rats whose FcRn was blocked with FcRn antibody. Rats were randomly assigned to receive placebo or 0.2 mg/kg MTX orally every week while taking one abdominal subcutaneous injection of 0.5 mg/kg adalimumab. The FcRn concentration in tissues and the PK parameters of adalimumab were compared between MTX-treated and placebo groups. RESULTS In rats with normally functioning FcRn, the concentrations of FcRn were significantly increased in the liver (F=105.5, p=0.000) and kidney (F=996.312, p=0.000) after treatment with MTX, and the clearance (CL/F) of adalimumab was decreased accordingly (F=4.423, p=0.048). However, in rats injected with FcRn antibody, the concentrations of FcRn in MTX-treated rats were close to that of the placebo rats in the tissues of the liver (F=1.279, p=0.268) and kidney (F=0.661, p=0.424). The CL/F of adalimumab in rats was also not affected by MTX (F=0.002, p=0.961). CONCLUSIONS FcRn may play a vital role in the interaction between adalimumab and MTX.
Collapse
|
37
|
Li J, Li X, Hao G, Zhang H, Yang H, Chen H, Qian P. Fusion of pseudorabies virus glycoproteins to IgG Fc enhances protective immunity against pseudorabies virus. Virology 2019; 536:49-57. [PMID: 31400549 DOI: 10.1016/j.virol.2019.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 01/29/2023]
Abstract
Molecular adjuvants are vaccine delivery vehicle to increase specific antigens effectiveness. Herein, we concentrated on IgG Fc, an effective molecular adjuvant, to develop novel pseudorabies virus (PRV) subunit vaccines. Two major protective antigen genes of PRV were constructed and linked into the mouse IgG Fc fragment. The gD, gD-IgG2aFc, gB and gB-IgG2aFc proteins were expressed using a baculovirus system. Mice intranasally immunized with gD-IgG2aFc or gB-IgG2aFc subunit vaccine exhibited significantly higher PRV-specific antibodies, neutralizing antibodies and intracellular cytokines than the mice intranasally immunized with gD or gB subunit vaccine. Moreover, no histopathological lesions were observed in mice immunized with gB-IgG2aFc subunit vaccine via histopathology examination. Further, the gB-IgG2aFc subunit vaccine was efficient for PRV infection compared with live attenuated vaccine. Overall, these results suggest that IgG2a Fc fragment, as a potential molecular adjuvant, fused with PRV antigen might be a promising and efficient PRV vaccine candidate.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huiling Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
38
|
Basak EA, Koolen SLW, Hurkmans DP, Schreurs MWJ, Bins S, Oomen-de Hoop E, Wijkhuijs AJM, Besten ID, Sleijfer S, Debets R, van der Veldt AAM, Aerts JGJV, Mathijssen RHJ. Correlation between nivolumab exposure and treatment outcomes in non-small-cell lung cancer. Eur J Cancer 2019; 109:12-20. [PMID: 30654225 DOI: 10.1016/j.ejca.2018.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nivolumab treatment is subject to large interpatient variability in both efficacy and toxicity, which may partly be explained by differences in nivolumab exposure. Exposure-response relationships in regular healthcare have not been extensively investigated for nivolumab. Therefore, we aimed to identify possible exposure-response relationships in nivolumab-treated patients with non-small-cell lung cancer (NSCLC). METHODS Patients with NSCLC who started second-line nivolumab therapy (3 mg/kg Q2W) between May 5th 2016 and August 1st 2017, and from whom serial blood samples, toxicity data and outcome data were prospectively collected, were included. Follow-up was carried out until November 1st 2017. Patients were classified according to the best overall response (BOR) based on the Response Evaluation Criteria in Solid Tumours, v1.1, and toxicities according to the Common Terminology Criteria for Adverse Events. Nivolumab trough concentrations were measured after 2, 4 and 10 weeks of treatment, excluding dose delays, and calculated geometric means were tested versus BOR or toxicity using analysis of variance and an independent samples t-test, respectively. Overall survival (OS) and progression-free survival were compared between high and low trough concentration groups. RESULTS Seventy-six patients were evaluable for analyses. Responders (n = 15) had higher mean trough concentrations than patients with progression (n = 33): 47% higher after 2 weeks (p = 0.001), 53% higher after 4 weeks (p = 0.008) and 73% higher after 10 weeks (p = 0.002). Higher trough concentrations were associated with longer OS (p = 0.001). CONCLUSIONS This study shows that patients with NSCLC with a response to nivolumab had a higher nivolumab exposure than patients with progression, indicating a potential exposure-response relationship. Further clinical research should focus on clarifying these exposure-response relationships.
Collapse
Affiliation(s)
- Edwin A Basak
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Stijn L W Koolen
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Dept. of Hospital Pharmacy, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Daan P Hurkmans
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marco W J Schreurs
- Dept. of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Bins
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Esther Oomen-de Hoop
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Ilse den Besten
- Dept. of Pulmonology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Reno Debets
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Joachim G J V Aerts
- Dept. of Pulmonology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
39
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Jing X, Hou Y, Hallett W, Sahajwalla CG, Ji P. Key Physicochemical Characteristics Influencing ADME Properties of Therapeutic Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:115-129. [PMID: 31482497 DOI: 10.1007/978-981-13-7709-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins are a rapidly growing class of drugs in clinical settings. The pharmacokinetics (PK) of therapeutic proteins relies on their absorption, distribution, metabolism, and excretion (ADME) properties. Moreover, the ADME properties of therapeutic proteins are impacted by their physicochemical characteristics. Comprehensive evaluation of these characteristics and their impact on ADME properties are critical to successful drug development. This chapter summarizes all relevant physicochemical characteristics and their effect on ADME properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xing Jing
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA.
| | - Yan Hou
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - William Hallett
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Chandrahas G Sahajwalla
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Ping Ji
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| |
Collapse
|
41
|
Zhao C, Gao Y, Yu N, Li T, Zhang Y, Zhang H, Lu G, Gao Y, Guo X. Unidirectional transport of IgG by neonatal Fc receptor in human thyrocytes varies across different IgG subclasses. Mol Cell Endocrinol 2018; 477:103-111. [PMID: 29908223 DOI: 10.1016/j.mce.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
Neonatal Fc receptor (FcRn) is down-regulated in Hashimoto's thyroiditis (HT) thyrocytes and mediates IgG endocytosis in thyrocytes. The serum distribution of IgG subclasses (of TgAb and TPOAb) differs between HT patients and normal individuals. We aimed to explore the direction and regulation of FcRn-mediated IgG transport in thyrocyte monolayers and the difference between various IgG subclass transport. IgG was transported by FcRn from the basolateral to apical side in the thyrocyte monolayers grown on Transwell filters and the transport was inhibited by IFN-γ and TNF-α. Stimulation by T3 and TSH down-regulated FcRn expression in thyrocytes. IgG1 was transported preferentially over IgG2 and IgG4, which might be related to the differences in FcRn-binding affinities as shown by SPR. FcRn mediates unidirectional IgG transport in thyrocytes in a tissue-specific manner. Down-regulation of FcRn is speculated to play a protective role in HT pathogenesis by mainly reducing IgG1 transport in thyrocytes.
Collapse
Affiliation(s)
- Chenxu Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Nan Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Tiancheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China; Centre for Cancer Research, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China.
| | - Hong Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Yanming Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
42
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
43
|
Sankaran PK, Kabadi PG, Honnappa CG, Subbarao M, Pai HV, Adhikary L, Palanivelu DV. Identification and quantification of product-related quality attributes in bio-therapeutic monoclonal antibody via a simple, and robust cation-exchange HPLC method compatible with direct online detection of UV and native ESI-QTOF-MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:83-95. [PMID: 30380467 DOI: 10.1016/j.jchromb.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023]
Abstract
Modern analytical ion-exchange chromatography is one of the conventional tools used for assessment of product-related quality attributes in bio-therapeutic monoclonal antibodies (mAbs). Here, we present an approach to resolve, identify, and quantify product-related substances of therapeutic mAb at its intact molecular level by cation exchange (CIEX) HPLC coupled directly to electrospray ionization - quadrupole time of flight mass spectrometry (ESI-QTOF-MS). This method utilizes pH gradient elution mode comprised of ammonium formate buffer components, and a weak cation exchange column as stationary phase. Furthermore, ion-mobility mass spectrometry (IM-MS) provided additional insights on its higher order structure. Also, orthogonal assays such as conventional CIEX-HPLC, high resolution capillary isoelectric focusing, peptide mapping, spectroscopic, and fluorescence methods were used considerably to support the findings. Additionally, an in vitro assay was included to assess the associated impact on Fc mediated function. Overall, the developed method with simultaneous detection of UV peak area percentage at 280 nm and native ESI-MS is found to be a rapid and robust analytical tool for direct assessment of structural and purity attributes, process optimization, product development, and to decipher the relevant role of micro-variants on quality, stability, and clinical outcomes.
Collapse
Affiliation(s)
- Praveen Kallamvalliillam Sankaran
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India.
| | - Pradeep G Kabadi
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| | - Chethan Gejjalagere Honnappa
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| | - Malini Subbarao
- Bioassay Development Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| | - Harish V Pai
- Bioassay Development Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| | - Laxmi Adhikary
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| | - Dinesh V Palanivelu
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore 560099, India
| |
Collapse
|
44
|
Castaneda DC, Dhommée C, Baranek T, Dalloneau E, Lajoie L, Valayer A, Arnoult C, Demattéi MV, Fouquenet D, Parent C, Heuzé-Vourc'h N, Gouilleux-Gruart V. Lack of FcRn Impairs Natural Killer Cell Development and Functions in the Tumor Microenvironment. Front Immunol 2018; 9:2259. [PMID: 30323819 PMCID: PMC6172308 DOI: 10.3389/fimmu.2018.02259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
The neonatal Fc receptor (FcRn) is responsible for the recycling and transcytosis of IgG and albumin. FcRn level was found altered in cancer tissues and implicated in tumor immunosurveillance and neoplastic cell growth. However, the consequences of FcRn down-regulation in the anti-tumor immune response are not fully elucidated. By using the B16F10 experimental lung metastasis model in an FcRn-deficient microenvironment (FcRn-/- mice), we found lung metastasis associated with an abnormal natural killer (NK) cell phenotype. In FcRn-/- mice, NK cells were immature, as shown by their surface marker profile and their decreased ability to degranulate and synthesize interferon γ after chemical and IL-2 or IL-12, IL-15 and IL-18 activation. These new findings support the critical role of FcRn downregulation in the tumor microenvironment in anti-tumor immunity, via NK cell maturation and activation.
Collapse
Affiliation(s)
| | - Christine Dhommée
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | - Thomas Baranek
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Laurie Lajoie
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | - Alexandre Valayer
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Christophe Arnoult
- Université François Rabelais de Tours, Tours, France
- CNRS, GICC UMR 7292, Tours, France
| | | | - Delphine Fouquenet
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Christelle Parent
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais de Tours, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, Tours, France
| | | |
Collapse
|
45
|
Bensch F, Smeenk MM, van Es SC, de Jong JR, Schröder CP, Oosting SF, Lub-de Hooge MN, Menke-van der Houven van Oordt CW, Brouwers AH, Boellaard R, de Vries EG. Comparative biodistribution analysis across four different 89Zr-monoclonal antibody tracers-The first step towards an imaging warehouse. Am J Cancer Res 2018; 8:4295-4304. [PMID: 30214621 PMCID: PMC6134927 DOI: 10.7150/thno.26370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
Rationale: Knowledge on monoclonal antibody biodistribution in healthy tissues in humans can support clinical drug development. Molecular imaging with positron emission tomography (PET) can yield information in this setting. However, recent imaging studies have analyzed the behavior of single antibodies only, neglecting comparison across different antibodies. Methods: We compared the distribution of four 89Zr-labeled antibodies in healthy tissue in a retrospective analysis based on the recently published harmonization protocol for 89Zr-tracers and our delineation protocol. Results: The biodistribution patterns of 89Zr-lumretuzumab, 89Zr-MMOT0530A, 89Zr-bevacizumab and 89Zr-trastuzumab on day 4 after tracer injection were largely similar. The highest tracer concentration was seen in healthy liver, spleen, kidney and intestines. About one-third of the injected tracer dose was found in the circulation, up to 15% in the liver and only 4% in the spleen and kidney. Lower tracer concentration was seen in bone marrow, lung, compact bone, muscle, fat and the brain. Despite low tracer accumulation per gram of tissue, large-volume tissues, especially fat, can influence overall distribution: On average, 5-7% of the injected tracer dose accumulated in fat, with a peak of 19% in a patient with morbid obesity. Conclusion: The similar biodistribution of the four antibodies is probably based on their similar molecular structure, binding characteristics and similar metabolic pathways. These data provide a basis for a prospectively growing, online accessible warehouse of molecular imaging data, which enables researchers to increase and exchange knowledge on whole body drug distribution and potentially supports drug development decisions.
Collapse
|
46
|
Decline of antibody response in indirect ELISA tests during the periparturient period caused diagnostic gaps in Coxiella burnetii and BVDV serology in pluriparous cows within a Holstein dairy herd. Res Vet Sci 2018; 118:91-96. [DOI: 10.1016/j.rvsc.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/25/2017] [Accepted: 01/20/2018] [Indexed: 11/21/2022]
|
47
|
Bruckmaier RM, Wellnitz O. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Pathogen-specific immune response and changes in the blood-milk barrier of the bovine mammary gland. J Anim Sci 2018; 95:5720-5728. [PMID: 29293747 DOI: 10.2527/jas2017.1845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Because of the decreasing use of antimicrobial drugs in animal food production, new treatments of infectious diseases such as mastitis are needed. This includes strategies to optimize the function of the animal's immune system. The present review discusses the components of the mammary immune response and the involvement of the blood-milk barrier during infections with different bacteria, strategies to manipulate the blood-milk barrier, and the potential to increase the efficiency of the animal's immune response. The mammary immune response is widely based on the cellular components of the innate immune system, which can be detected as an increase of the somatic cell count (SCC). During infection with Gram-negative bacteria such as , characterized by severe clinical symptoms, there is a considerable transfer of soluble blood components including immunoglobulins from blood into milk. This is not typically observed during intramammary infection with Gram-positive bacteria such as , which is typically observed as a chronic subclinical infection. We have simulated these different types of mastitis by administering cell wall components of these bacteria (i.e., lipopolysaccharide [LPS] from and lipoteichoic acid [LTA] from ). Dosages of these 2 components intramammarily administered were adjusted to induce a comparable increase in SCC. Treatment with LPS caused a comprehensive transfer of blood components including immunoglobulins into milk, whereas in the LTA-induced mastitis, only a small increase of blood components in milk occurred. The blood-milk barrier can be manipulated. Glucocorticoids such as prednisolone reduced the transfer of blood components from blood into milk while reducing the general inflammatory reaction. It is possible that this treatment also inhibits the transfer of immunoglobulins into milk, likely reducing the efficiency of the immune response. In contrast, an opening of the blood-milk barrier could be achieved by an extremely high dosage of oxytocin (e.g., 100 IU). We assume that the myoepithelial hypercontraction increases the epithelial permeability that allows an increased flux of blood components including immunoglobulins into milk. The potential for manipulating the blood-milk barrier permeability as a treatment for mastitis is possible if specific antibodies against pathogens can be efficiently transported to the infected mammary gland.
Collapse
|
48
|
Ma Y, Ke C, Wan Z, Li Z, Cheng X, Wang X, Zhao J, Ma Y, Ren L, Han H, Zhao Y. Truncation of the Murine Neonatal Fc Receptor Cytoplasmic Tail Does Not Alter IgG Metabolism or Transport In Vivo. THE JOURNAL OF IMMUNOLOGY 2018; 200:1413-1424. [PMID: 29298832 DOI: 10.4049/jimmunol.1700924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Abstract
The neonatal Fc receptor (FcRn) is involved in IgG metabolism and transport in placental mammals. However, whether FcRn is responsible for IgG transfer from maternal serum to colostrum/milk is controversial. Interestingly, large domestic animals, such as cows, pigs, sheep, and horses, in which passive IgG transfer is exclusively completed via colostrum/milk, all express an FcRn α-chain that is shorter in the cytoplasmic tail (CYT) than its counterparts in humans and rodents. To address whether the length variation has any functional significance, we performed in vitro experiments using the Transwell system with the MDCK cell line stably transfected with various FcRn constructs; these clearly suggested that truncation of the CYT tail caused a polar change in IgG transfer. However, we observed no evidence supporting functional changes in IgG in vivo using mice in which the FcRn CYT was precisely truncated. These data suggest that the length variation in FcRn is not functionally associated with passive IgG transfer routes in mammals.
Collapse
Affiliation(s)
- Yonghe Ma
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zihui Wan
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zili Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xifeng Wang
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
49
|
Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O'Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs 2017; 10:81-94. [PMID: 28991504 PMCID: PMC5800364 DOI: 10.1080/19420862.2017.1389355] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.
Collapse
Affiliation(s)
| | | | - Amy C King
- a BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mania Kavosi
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Mengmeng Wang
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | | | | |
Collapse
|
50
|
Fcγ Receptor Function and the Design of Vaccination Strategies. Immunity 2017; 47:224-233. [PMID: 28813656 DOI: 10.1016/j.immuni.2017.07.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Through specific interactions with distinct types of Fcγ receptors (FcγRs), the Fc domain of immunoglobulin G (IgG) mediates a wide spectrum of immunological functions that influence both innate and adaptive responses. Recent studies indicate that IgG Fc-FcγR interactions are dynamically regulated during an immune response through the control of the Fc-associated glycan structure and Ig subclass composition on the one hand and selective FcγR expression on immune cells on the other, which together determine the capacity of IgG to interact in a cell-type-specific manner with specific members of the FcγR family. Here, we present a framework that synthesizes the current understanding of the contribution of FcγR pathways to the induction and regulation of antibody and T cell responses. Within this context, we discuss vaccination strategies to elicit broad and potent immune responses based on the immunomodulatory properties of Fc-FcγR interactions.
Collapse
|