1
|
Liu J, Gaunt MJ. Versatile, Modular, and General Strategy for the Synthesis of α-Amino Carbonyls. J Am Chem Soc 2024; 146:24699-24707. [PMID: 39180740 PMCID: PMC11378281 DOI: 10.1021/jacs.4c09434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Modulating the basicity of alkylamines is a crucial factor in drug design. Consequently, alkylamines with a proximal amide, ester, or ketone have become privileged features in many pharmaceutical candidates. The impact of α-amino carbonyls has made the development of new methods for their preparation a continuous challenge in synthesis. Here, we describe a practical strategy that provides a modular and programmable synthesis of a wide range of α-amino carbonyls. The generality of this process is made possible by an extremely mild method to generate carbamoyl radicals, proceeding via a Lewis acid-visible-light-mediated Norrish type-I fragmentation of a tailored carboxamide reagent and intercepted through addition to in situ generated unbiased imines. Aside from the reaction's broad scope in each component, its capacity to draw on plentiful and diversely populated amine and carbonyl feedstocks is showcased through a two-dimensional array synthesis that is used to construct a library of novel, assay-ready, α-amino amides.
Collapse
Affiliation(s)
- Jianzhong Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Baudis S, Behl M. High-Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromol Rapid Commun 2021; 43:e2100400. [PMID: 34460146 DOI: 10.1002/marc.202100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Indexed: 01/22/2023]
Abstract
High-throughput (HT) development of new multifunctional polymers is accomplished by the combination of different HT tools established in polymer sciences in the last decade. Important advances are robotic/HT synthesis of polymer libraries, the HT characterization of polymers, and the application of spatially resolved polymer library formats, explicitly microarray and gradient libraries. HT polymer synthesis enables the generation of material libraries with combinatorial design motifs. Polymer composition, molecular weight, macromolecular architecture, etc. may be varied in a systematic, fine-graded manner to obtain libraries with high chemical diversity and sufficient compositional resolution as model systems for the screening of these materials for the functions aimed. HT characterization allows a fast assessment of complementary properties, which are employed to decipher quantitative structure-properties relationships. Moreover, these methods facilitate the HT determination of important surface parameters by spatially resolved characterization methods, including time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Here current methods for the high-throughput robotic synthesis of multifunctional polymers as well as their characterization are presented and advantages as well as present limitations are discussed.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marc Behl
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
3
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Arranz-Gibert P, Guixer B, Malakoutikhah M, Muttenthaler M, Guzmán F, Teixidó M, Giralt E. Lipid bilayer crossing--the gate of symmetry. Water-soluble phenylproline-based blood-brain barrier shuttles. J Am Chem Soc 2015; 137:7357-64. [PMID: 25992679 DOI: 10.1021/jacs.5b02050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drug delivery to the brain can be achieved by various means, including blood-brain barrier (BBB) disruption, neurosurgical-based approaches, and molecular design. Recently, passive diffusion BBB shuttles have been developed to transport low-molecular-weight drug candidates to the brain which would not be able to cross unaided. The low water solubility of these BBB shuttles has, however, prevented them from becoming a mainstream tool to deliver cargos across membranes. Here, we describe the design, synthesis, physicochemical characterization, and BBB-transport properties of phenylproline tetrapeptides, (PhPro)4, an improved class of BBB shuttles that operates via passive diffusion. These PhPro-based BBB shuttles showed 3 orders of magnitude improvement in water solubility compared to the gold-standard (N-MePhe)4, while retaining very high transport values. Transport capacity was confirmed when two therapeutically relevant cargos, nipecotic acid and l-3,4-dihydroxyphenylalanine (i.e., l-DOPA), were attached to the shuttle. Additionally, we used the unique chiral and conformationally restricted character of the (PhPro)4 shuttle to probe its chiral interactions with the lipid bilayer of the BBB. We studied the transport properties of 16 (PhPro)4 stereoisomers using the parallel artificial membrane permeability assay and looked at differences in secondary structure. Most stereoisomers displayed excellent transport values, yet this study also revealed pairs of enantiomers with high enantiomeric discrimination and different secondary structure, where one enantiomer maintained its high transport values while the other had significantly lower values, thereby confirming that stereochemistry plays a significant role in passive diffusion. This could open the door to the design of chiral and membrane-specific shuttles with potential applications in cell labeling and oncology.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Bernat Guixer
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Morteza Malakoutikhah
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,‡Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Markus Muttenthaler
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Fanny Guzmán
- §Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Meritxell Teixidó
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain
| | - Ernest Giralt
- †Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona E-08028, Spain.,∥Department of Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
5
|
High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization. Handb Exp Pharmacol 2015; 232:73-89. [PMID: 26330259 DOI: 10.1007/164_2015_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small-molecule intervention of protein function is one central dogma of drug discovery. The generation of small-molecule libraries fuels the discovery pipeline at many stages and thereby resembles a key aspect of this endeavor. High-throughput synthesis is a major source for compound libraries utilized in academia and industry, seeking new chemical modulators of pharmacological targets. Here, we discuss the crucial factors of library design strategies from the perspective of synthetic chemistry, giving a brief historic background and a summary of current approaches. Simple measures of success of a high-throughput synthesis such as quantity or diversity have long been discarded and replaced by more integrated measures. Case studies are presented and put into context to highlight the cross-connectivity of the various stages of the drug discovery process.
Collapse
|
6
|
Kim J, Kim H, Park SB. Privileged Structures: Efficient Chemical “Navigators” toward Unexplored Biologically Relevant Chemical Spaces. J Am Chem Soc 2014; 136:14629-38. [DOI: 10.1021/ja508343a] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonghoon Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Heejun Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Seung Bum Park
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
7
|
Choi J, Baek KH, Moon E. Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. THE PLANT PATHOLOGY JOURNAL 2014; 30:245-53. [PMID: 25289010 PMCID: PMC4181117 DOI: 10.5423/ppj.oa.02.2014.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 05/14/2023]
Abstract
Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as Ca(2+) and Mg(2+) inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to Ca(2+) suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.
Collapse
Affiliation(s)
- Jeahyuk Choi
- Department of Biological Science, Ajou University, Suwon 442-749, Korea
- School of Biotechnology, Yeungnam University, Gyengsan 712-749, Korea
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyengsan 712-749, Korea
| | - Eunpyo Moon
- Department of Biological Science, Ajou University, Suwon 442-749, Korea
- Corresponding author. Phone) +82-031-219-2620, FAX) +82-031-219-1615 E-mail)
| |
Collapse
|
8
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
9
|
Pipkorn R, Braun K, Wiessler M, Waldeck W, Schrenk HH, Koch M, Semmler W, Komljenovic D. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS. Int J Med Sci 2014; 11:697-706. [PMID: 24843319 PMCID: PMC4025169 DOI: 10.7150/ijms.8168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here.
Collapse
Affiliation(s)
- Ruediger Pipkorn
- 1. German Cancer Research Center, Dept. of Translational Immunology, INF 410, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Waldemar Waldeck
- 3. German Cancer Research Center, Division of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Hans-Hermann Schrenk
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Mario Koch
- 1. German Cancer Research Center, Dept. of Translational Immunology, INF 410, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Dorde Komljenovic
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Lin KI, Chiang LW, Pan CT, Huang HL, Su YH, Chen ST, Huang YC, Yu CS. 6-Azido-Galactosyl Imidate as a Building Block for Preparation of 1-(4-Aminobutyl)-, Di-, Tri- and Tetra-Saccharides. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmc.2013.33010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kranenburg JM, Van Duin M, Schubert US. HIGH-THROUGHPUT KINETIC STUDY OF PEROXIDE CURING OF EPDM RUBBER. RUBBER CHEMISTRY AND TECHNOLOGY 2011. [DOI: 10.5254/1.3548735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Mixing of EPDM and a peroxide curative via a solution route and subsequent curing were performed in a downscaled set-up. The resulting vulcanizates were characterized by a down-scaled hardness measurement and by Raman spectroscopy in a high-throughput experimentation compatible approach. The characterization results obtained on these vulcanizates agreed well with those obtained on corresponding vulcanizates prepared via conventional mill mixing. By indentation on vulcanizates cured for various curing times, a rheometer curve could be constructed. The conversion of the EPDM unsaturation and, thus, the extent of the addition reactions was quantified by Raman spectroscopy. Using both the indentation and the Raman data, the cross-link density resulting from combination reactions was estimated.
Collapse
Affiliation(s)
- Johannes M. Kranenburg
- 1Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- 2Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, the Netherlands
| | - Martin Van Duin
- 3DSM Elastomers – Global R&D, P.O. Box 18, 6160 MB Geleen, the Netherlands
| | - Ulrich S. Schubert
- 1Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- 2Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, the Netherlands
- 4Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| |
Collapse
|
12
|
Oh S, Park SB. A design strategy for drug-like polyheterocycles with privileged substructures for discovery of specific small-molecule modulators. Chem Commun (Camb) 2011; 47:12754-61. [DOI: 10.1039/c1cc14042f] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Armishaw CJ. Synthetic α-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Toxins (Basel) 2010; 2:1471-99. [PMID: 22069647 PMCID: PMC3153239 DOI: 10.3390/toxins2061471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/27/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022] Open
Abstract
α-Conotoxins are peptide neurotoxins isolated from venomous marine cone snails that are potent and selective antagonists for different subtypes of nicotinic acetylcholine receptors (nAChRs). As such, they are valuable probes for dissecting the role that nAChRs play in nervous system function. In recent years, extensive insight into the binding mechanisms of α-conotoxins with nAChRs at the molecular level has aided in the design of synthetic analogs with improved pharmacological properties. This review examines the structure-activity relationship studies involving α-conotoxins as research tools for studying nAChRs in the central and peripheral nervous systems and their use towards the development of novel therapeutics.
Collapse
Affiliation(s)
- Christopher J Armishaw
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St Lucie, FL 34987, USA.
| |
Collapse
|
14
|
Volkmer R. Synthesis and application of peptide arrays: quo vadis SPOT technology. Chembiochem 2009; 10:1431-42. [PMID: 19437530 DOI: 10.1002/cbic.200900078] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rudolf Volkmer
- Institut für Medizinische Immunologie, AG Molekulare Bibliotheken, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany.
| |
Collapse
|
15
|
Petersen LK, Narasimhan B. Combinatorial design of biomaterials for drug delivery: opportunities and challenges. Expert Opin Drug Deliv 2008; 5:837-46. [DOI: 10.1517/17425247.5.8.837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Webster DC. Combinatorial and High-Throughput Methods in Macromolecular Materials Research and Development. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700558] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Wang J, Uttamchandani M, Sun H, Yao S. Small Molecule Microarrays: Applications Using Specially Tagged Chemical Libraries. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200640083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Tomasi S, Picard S, Lainé C, Babonneau V, Goujeon A, Boustie J, Uriac P. Solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound. ACTA ACUST UNITED AC 2006; 8:11-4. [PMID: 16398547 DOI: 10.1021/cc050122t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sophie Tomasi
- Institut de Chimie de Rennes, EA "Substances licheniques et Photoprotection", Laboratoire de Microbiologie and Immunologie Pharmaceutiques, UPRES 1254, Faculté de Pharmacie, 35043 Rennes Cedex, France. sophie.tomasi@ univ-rennes1.fr
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P. ChemDB: a public database of small molecules and related chemoinformatics resources. ACTA ACUST UNITED AC 2005; 21:4133-9. [PMID: 16174682 DOI: 10.1093/bioinformatics/bti683] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION The development of chemoinformatics has been hampered by the lack of large, publicly available, comprehensive repositories of molecules, in particular of small molecules. Small molecules play a fundamental role in organic chemistry and biology. They can be used as combinatorial building blocks for chemical synthesis, as molecular probes in chemical genomics and systems biology, and for the screening and discovery of new drugs and other useful compounds. RESULTS We describe ChemDB, a public database of small molecules available on the Web. ChemDB is built using the digital catalogs of over a hundred vendors and other public sources and is annotated with information derived from these sources as well as from computational methods, such as predicted solubility and three-dimensional structure. It supports multiple molecular formats and is periodically updated, automatically whenever possible. The current version of the database contains approximately 4.1 million commercially available compounds and 8.2 million counting isomers. The database includes a user-friendly graphical interface, chemical reactions capabilities, as well as unique search capabilities. AVAILABILITY Database and datasets are available on http://cdb.ics.uci.edu.
Collapse
Affiliation(s)
- Jonathan Chen
- Institute for Genomics and Bioinformatics, University of California, Irvine, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Chemical space--which encompasses all possible small organic molecules, including those present in biological systems--is vast. So vast, in fact, that so far only a tiny fraction of it has been explored. Nevertheless, these explorations have greatly enhanced our understanding of biology, and have led to the development of many of today's drugs. The discovery of new bioactive molecules, facilitated by a deeper understanding of the nature of the regions of chemical space that are relevant to biology, will advance our knowledge of biological processes and lead to new strategies to treat disease.
Collapse
Affiliation(s)
- Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
21
|
Sasubilli R, Gutheil WG. General Inverse Solid-Phase Synthesis Method for C-Terminally Modified Peptide Mimetics. ACTA ACUST UNITED AC 2004; 6:911-5. [PMID: 15530118 DOI: 10.1021/cc049912d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide mimetics are of considerable interest as bioactive agents and drugs. C-terminally modified peptide mimetics are of particular interest given the synthetic versatility of the carboxyl group and its derivatives. A general approach to C-terminally modified peptide mimetics, based on a urethane attachment strategy and amino acid t-butyl ester-based N-to-C peptide synthesis, is described. This approach is compatible with the reaction conditions generally employed for solution-phase peptide mimetic synthesis. To develop and demonstrate this approach, it was employed for the solid-phase synthesis of peptide trifluoromethyl ketones, peptide boronic acids, and peptide hydroxamic acids. The development of a versatile general approach to C-terminally modified peptides using readily available starting materials provides a basis for the combinatorial and parallel solid-phase synthesis of these peptide mimetic classes for bioactive agent screening and also provides a basis for the further development of solid-phase C-terminal functional group elaboration strategies.
Collapse
Affiliation(s)
- Ramakrishna Sasubilli
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
22
|
Nefzi A, Ostresh JM, Yu Y, Yu J, Houghten RA. Combinatorial chemistry: libraries from libraries, the art of the diversity-oriented transformation of resin-bound peptides and chiral polyamides to low molecular weight acyclic and heterocyclic compounds. J Org Chem 2004; 69:3603-9. [PMID: 15152987 DOI: 10.1021/jo040114j] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.
Collapse
Affiliation(s)
- Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
A personal review by the first graduate student of Professor R. Bruce Merrifield of the evolution of solid-phase synthesis and its acceptance by various subsets of the chemistry community. Solid-phase synthesis, as currently practised in the synthesis of biopolymers, combinatorial solid-phase organic chemistry, synthesis of natural products, catalyst selection, chemical ligation and materials development, has proven a paradigm shift for the chemistry community.
Collapse
Affiliation(s)
- Garland R Marshall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, 700 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
24
|
Gedey S, Fülöp F, Vainiotalo P, De Witte PAM, Zupkó I. Liquid-phase synthesis of mixture-based bicyclic β-lactam libraries. J Heterocycl Chem 2003. [DOI: 10.1002/jhet.5570400601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Fujimori T, Wirsching P, Janda KD. Preparation of a Kröhnke Pyridine Combinatorial Library Suitable for Solution-Phase Biological Screening. ACTA ACUST UNITED AC 2003. [DOI: 10.1021/cc0300208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taketoshi Fujimori
- Department of Chemistry BCC-582, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Peter Wirsching
- Department of Chemistry BCC-582, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Kim D. Janda
- Department of Chemistry BCC-582, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
26
|
Leung D, Hardouin C, Boger DL, Cravatt BF. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat Biotechnol 2003; 21:687-91. [PMID: 12740587 DOI: 10.1038/nbt826] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 02/24/2003] [Indexed: 11/09/2022]
Abstract
To realize the promise of genomics-based therapeutics, new methods are needed to accelerate the discovery of small molecules that selectively modulate protein activity. Toward this end, advances in combinatorial synthesis have provided unprecedented access to large compound libraries of considerable structural complexity and diversity, shifting the bottleneck in drug discovery to the development of efficient screens for protein targets. Screening for reversible enzyme inhibitors typically requires extensive target-specific work, including protein expression and purification, as well as the development of specific substrate assays. Here we report a proteomic method for the discovery of reversible enzyme inhibitors that avoids these steps. We show that competitive profiling of a library of candidate serine hydrolase inhibitors in complex proteomes with activity-based chemical probes identifies nanomolar reversible inhibitors of several enzymes simultaneously, including the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH), triacylglycerol hydrolase (TGH) and an uncharacterized membrane-associated hydrolase that lacks known substrates. The strategy tests inhibitors against numerous enzymes in parallel, assigning both potency and selectivity factors to each agent. In this way, promiscuous inhibitors were readily rejected in favor of equally potent compounds with 500-fold or greater selectivity for their targets.
Collapse
Affiliation(s)
- Donmienne Leung
- The Skaggs Institute for Chemical Biology and the Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
27
|
Spivey AC, Srikaran R, Diaper CM, Turner DJ. Traceless solid phase synthesis of 2-substituted pyrimidines using an 'off-the-shelf' chlorogermane-functionalised resin. Org Biomol Chem 2003; 1:1638-40. [PMID: 12926347 DOI: 10.1039/b303064d] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The parallel solid phase synthesis of an 18-member library of 2-substituted pyrimidines is described using a chlorogermane-functionalised resin. The success of the key Pinner-type condensations between a resin-bound enaminone and an array of amidine hydrochlorides highlights the stability of arylgermane linkers (cf. arylsilanes) towards strongly basic/nucleophilic conditions.
Collapse
Affiliation(s)
- Alan C Spivey
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, Yorkshire, UK S3 7HF.
| | | | | | | |
Collapse
|
28
|
Chappelle MR, Harding JR, Kent BB, Jones JR, Lu SY, Morgan AD. Combining microwave-enhanced deuteriation reactions with parallel synthesis procedures. J Labelled Comp Radiopharm 2003. [DOI: 10.1002/jlcr.697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Gedey S, Van der Eycken J, Fülöp F. Liquid-phase combinatorial synthesis of alicyclic beta-lactams via Ugi four-component reaction. Org Lett 2002; 4:1967-9. [PMID: 12027659 DOI: 10.1021/ol025986r] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] Alicyclic beta-lactams were successfully synthesized via a parallel liquid-phase Ugi four-center three-component reaction (U-4C-3CR), starting from alicyclic beta-amino acids such as cis-2-aminocyclohexanecarboxylic acid, cis-2-aminocyclopentanecarboxylic acid, 2,3-diexo-3-aminobicyclo[2.2.1]heptane-2-carboxylic acid and some of their partially unsaturated analogues. A six-membered mixture-based combinatorial library of beta-lactams was also generated.
Collapse
Affiliation(s)
- Szilvia Gedey
- Institute of Pharmaceutical Chemistry, University of Szeged, PO Box 121, H-6701 Szeged, Hungary
| | | | | |
Collapse
|
30
|
Abstract
Combinatorial chemistry has become a popular tool for the preparation of collections of compounds that can be used to find inhibitors and substrates for different protein targets. It has evolved to provide small molecule libraries, which, with the concomittant use of affinity chromatography, gene expression profiling and complementation, can be used to identify compounds and their protein targets in biological systems, including the neurological system.
Collapse
Affiliation(s)
- N S Gray
- Novartis Institute of Functional Genomics, 3115 Merryfield Row Suite 200, 92121-1125, San Diego, CA 92121-1125, USA.
| |
Collapse
|
31
|
Lavigne JJ, Anslyn EV. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angew Chem Int Ed Engl 2001; 40:3118-3130. [DOI: 10.1002/1521-3773(20010903)40:17<3118::aid-anie3118>3.0.co;2-y] [Citation(s) in RCA: 470] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Indexed: 11/08/2022]
|
32
|
Lavigne JJ, Anslyn EV. Aufspüren eines Paradigmenwechsels auf dem Gebiet der molekularen Erkennung: von den selektiven Rezeptoren zu den differenziellen Rezeptoren. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010903)113:17<3212::aid-ange3212>3.0.co;2-t] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|