1
|
Klontzas ME, Protonotarios A. High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review. Bioengineering (Basel) 2021; 8:182. [PMID: 34821748 PMCID: PMC8614770 DOI: 10.3390/bioengineering8110182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
Collapse
Affiliation(s)
- Michail E. Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, Voutes Campus, University of Crete, 71003 Heraklion, Crete, Greece
| | | |
Collapse
|
2
|
Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin Biol Ther 2021; 21:1253-1264. [PMID: 33576278 DOI: 10.1080/14712598.2021.1890711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: As stem cell treatments reach closer to the clinic, the need for appropriate noninvasive imaging for accurate disease diagnosis, treatment planning, follow-up, and early detection of complications, is constantly rising. Clinical radiology affords an extensive arsenal of advanced imaging techniques, to provide anatomical and functional information on the whole spectrum of stem cell treatments from diagnosis to follow-up.Areas covered: This manuscript aims at providing a critical review of major published studies on the utilization of advanced imaging for stem cell treatments. Uses of magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and positron emission tomography (PET) are reviewed and interrogated for their applicability to stem cell imaging.Expert opinion: A wide spectrum of imaging methods have been utilized for the evaluation of stem cell therapies. The majority of published techniques are not clinically applicable, using methods exclusively applicable to animals or technology irrelevant to current clinical practice. Harmonization of preclinical methods with clinical reality is necessary for the timely translation of stem cell therapies to the clinic. Methods such as diffusion weighted MRI, hybrid imaging, and contrast-enhanced ultrasound hold great promise and should be routinely incorporated in the evaluation of patients receiving stem cell treatments.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - George A Kakkos
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
3
|
Klontzas ME, Karantanas AH. Incorporating engineering principles in radiology education: Are we ready to face the future? Diagn Interv Imaging 2021; 102:195-196. [PMID: 33610502 DOI: 10.1016/j.diii.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece; Advanced Hybrid Imaging Systems, Foundation for Research and Technology (FORTH), Institute of Computer Science, 70013 Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 71110 Heraklion, Crete, Greece.
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece; Advanced Hybrid Imaging Systems, Foundation for Research and Technology (FORTH), Institute of Computer Science, 70013 Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 71110 Heraklion, Crete, Greece
| |
Collapse
|