1
|
Ellis DG, Garlinghouse M, Warren DE, Aizenberg MR. Longitudinal changes in brain connectivity correlate with neuropsychological testing in brain tumor resection patients. Front Neurosci 2025; 19:1532433. [PMID: 40196233 PMCID: PMC11973353 DOI: 10.3389/fnins.2025.1532433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Background Patients undergoing brain tumor resection experience neurological and cognitive (i.e., neurocognitive) changes reflected in altered performance on neuropsychological tests. These changes can be difficult to explain or predict. Brain connectivity, measured with neuroimaging, offers one potential model for examining these changes. In this study, we evaluated whether longitudinal changes in brain connectivity correlated with changes in neurocognitive abilities in patients before and after brain tumor resection. Methods Patients underwent functional and diffusion MR scanning and neuropsychological evaluation before tumor resection followed by repeat scanning and evaluation 2 weeks post-resection. Using this functional and diffusion imaging data, we measured changes in the topology of the functional and structural networks. From the neuropsychological testing scores, we derived a composite score that described a patient's overall level of neurocognitive functioning. We then used a multiple linear regression model to test whether structural and functional connectivity measures were correlated with changes in composite scores. Results Multiple linear regression on 21 subjects showed that functional connectivity changes were highly correlated with changes in neuropsychological evaluation scores (R2 adjusted = 0.79, p < 0.001). Changes in functional local efficiency (p < 0.001) and global efficiency (p < 0.05) were inversely correlated with changes in composite score, while changes in modularity (p < 0.01) as well as the patient's age (p < 0.05) were directly correlated with changes in composite score. Conclusion Short interval changes in brain functional connectivity markers were strongly correlated with changes in the composite neuropsychological test scores in brain tumor resection patients. Our findings support the need for further exploration of brain connectivity as a biomarker relevant to brain tumor patients.
Collapse
Affiliation(s)
- David G. Ellis
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew Garlinghouse
- Nebraska-Western Iowa Veteran’s Affairs Medical Center, Omaha, NE, United States
| | - David E. Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michele R. Aizenberg
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Moretto M, Luciani BF, Zigiotto L, Saviola F, Tambalo S, Cabalo DG, Annicchiarico L, Venturini M, Jovicich J, Sarubbo S. Resting State Functional Networks in Gliomas: Validation With Direct Electric Stimulation Using a New Tool for Planning Brain Resections. Neurosurgery 2024; 95:1358-1368. [PMID: 38836617 PMCID: PMC11540433 DOI: 10.1227/neu.0000000000003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Precise mapping of functional networks in patients with brain tumor is essential for tailoring personalized treatment strategies. Resting-state functional MRI (rs-fMRI) offers an alternative to task-based fMRI, capable of capturing multiple networks within a single acquisition, without necessitating task engagement. This study demonstrates a strong concordance between preoperative rs-fMRI maps and the gold standard intraoperative direct electric stimulation (DES) mapping during awake surgery. METHODS We conducted an analysis involving 28 patients with glioma who underwent awake surgery with DES mapping. A total of 100 DES recordings were collected to map sensorimotor (SMN), language (LANG), visual (VIS), and speech articulation cognitive domains. Preoperative rs-fMRI maps were generated using an updated version of the ReStNeuMap software, specifically designed for rs-fMRI data preprocessing and automatic detection of 7 resting-state networks (SMN, LANG, VIS, speech articulation, default mode, frontoparietal, and visuospatial). To evaluate the agreement between these networks and those mapped with invasive cortical mapping, we computed patient-specific distances between them and intraoperative DES recordings. RESULTS Automatically detected preoperative functional networks exhibited excellent agreement with intraoperative DES recordings. When we spatially compared DES points with their corresponding networks, we found that SMN, VIS, and speech articulatory DES points fell within the corresponding network (median distance = 0 mm), whereas for LANG a median distance of 1.6 mm was reported. CONCLUSION Our findings show the remarkable consistency between key functional networks mapped noninvasively using presurgical rs-fMRI and invasive cortical mapping. This evidence highlights the utility of rs-fMRI for personalized presurgical planning, particularly in scenarios where awake surgery with DES is not feasible to protect eloquent areas during tumor resection. We have made the updated tool for automated functional network estimation publicly available, facilitating broader utilization of rs-fMRI mapping in various clinical contexts, including presurgical planning, functional reorganization over follow-up periods, and informing future treatments such as radiotherapy.
Collapse
Affiliation(s)
- Manuela Moretto
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | | | - Luca Zigiotto
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Psychology, University of Trento, Trento, Italy
| | - Francesca Saviola
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Stefano Tambalo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Donna Gift Cabalo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luciano Annicchiarico
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Martina Venturini
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Silvio Sarubbo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Department of Neurosurgery, “S. Chiara” University-Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Cellular, Computation and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMED), University of Trento, Trento, Italy
| |
Collapse
|
3
|
Lavrador JP, Marchi F, Elhag A, Kalyal N, Mthunzi E, Awan M, Wroe-Wright O, Díaz-Baamonde A, Mirallave-Pescador A, Reisz Z, Gullan R, Vergani F, Ashkan K, Bhangoo R. In Situ Light-Source Delivery During 5-Aminulevulinic Acid-Guided High-Grade Glioma Resection: Spatial, Functional and Oncological Informed Surgery. Biomedicines 2024; 12:2748. [PMID: 39767656 PMCID: PMC11673840 DOI: 10.3390/biomedicines12122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES 5-aminulevulinic acid (5-ALA)-guided surgery for high-grade gliomas remains a challenge in neuro-oncological surgery. Inconsistent fluorescence visualisation, subjective quantification and false negatives due to blood, haemostatic agents or optical impediments from the external light source are some of the limitations of the present technology. METHODS The preliminary results from this single-centre retrospective study are presented from the first 35 patients operated upon with the novel Nico Myriad Spectra System©. The microdebrider (Myriad) with an additional in situ light system (Spectra) can alternately provide white and blue light (405 nm) to within 15 mm of the tissue surface to enhance the morphology of the anatomical structures and the fluorescence of the pathological tissues. RESULTS A total of 35 patients were operated upon with this new technology. Eight patients (22.85%) underwent tubular retractor-assisted minimally invasive parafascicular surgery (tr-MIPS). The majority had high-grade gliomas (68.57%). Fluorescence was identified in 30 cases (85.71%), with residual fluorescence in 11 (36.66%). The main applications were better white-blue light alternation and visualisation during tr-MIPS, increase in the extent of resection at the border of the cavity, identification of satellite lesions in multifocal pathology, the differentiation between radionecrosis and tumour recurrence in redo surgery and the demarcation between normal ependyma versus pathological ependyma in tumours infiltrating the subventricular zone. CONCLUSIONS This proof-of-concept study confirms that the novel in situ light-source delivery technology integrated with the usual intraoperative armamentarium provides a spatially, functionally and oncologically informed framework for glioblastoma surgery. It allows for the enhancement of the morphology of anatomical structures and the fluorescence of pathological tissues, increasing the extent of resection and, possibly, the prognosis for patients with high-grade gliomas.
Collapse
Affiliation(s)
- José Pedro Lavrador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Francesco Marchi
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Ali Elhag
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Nida Kalyal
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Engelbert Mthunzi
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Mariam Awan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Oliver Wroe-Wright
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Alba Díaz-Baamonde
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Ana Mirallave-Pescador
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Richard Gullan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| |
Collapse
|
4
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
6
|
Andorno R, Lavazza A. How to deal with mind-reading technologies. Front Psychol 2023; 14:1290478. [PMID: 38034284 PMCID: PMC10682168 DOI: 10.3389/fpsyg.2023.1290478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Roberto Andorno
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zürich, Switzerland
| | - Andrea Lavazza
- Centro Universitario Internazionale, Arezzo, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Lakhani DA, Sabsevitz DS, Chaichana KL, Quiñones-Hinojosa A, Middlebrooks EH. Current State of Functional MRI in the Presurgical Planning of Brain Tumors. Radiol Imaging Cancer 2023; 5:e230078. [PMID: 37861422 DOI: 10.1148/rycan.230078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Surgical resection of brain tumors is challenging because of the delicate balance between maximizing tumor removal and preserving vital brain functions. Functional MRI (fMRI) offers noninvasive preoperative mapping of widely distributed brain areas and is increasingly used in presurgical functional mapping. However, its impact on survival and functional outcomes is still not well-supported by evidence. Task-based fMRI (tb-fMRI) maps blood oxygen level-dependent (BOLD) signal changes during specific tasks, while resting-state fMRI (rs-fMRI) examines spontaneous brain activity. rs-fMRI may be useful for patients who cannot perform tasks, but its reliability is affected by tumor-induced changes, challenges in data processing, and noise. Validation studies comparing fMRI with direct cortical stimulation (DCS) show variable concordance, particularly for cognitive functions such as language; however, concordance for tb-fMRI is generally greater than that for rs-fMRI. Preoperative fMRI, in combination with MRI tractography and intraoperative DCS, may result in improved survival and extent of resection and reduced functional deficits. fMRI has the potential to guide surgical planning and help identify targets for intraoperative mapping, but there is currently limited prospective evidence of its impact on patient outcomes. This review describes the current state of fMRI for preoperative assessment in patients undergoing brain tumor resection. Keywords: MR-Functional Imaging, CNS, Brain/Brain Stem, Anatomy, Oncology, Functional MRI, Functional Anatomy, Task-based, Resting State, Surgical Planning, Brain Tumor © RSNA, 2023.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - David S Sabsevitz
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Kaisorn L Chaichana
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Alfredo Quiñones-Hinojosa
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| | - Erik H Middlebrooks
- From the Department of Radiology, West Virginia University, Morgantown, WV (D.A.L.); and Departments of Psychiatry and Psychology (D.S.S.), Neurosurgery (K.L.C., A.Q.H., E.H.M.), and Radiology (E.H.M.), Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL 32224
| |
Collapse
|
8
|
Schei S, Sagberg LM, Bø LE, Reinertsen I, Solheim O. Association between patient-reported cognitive function and location of glioblastoma. Neurosurg Rev 2023; 46:282. [PMID: 37880432 PMCID: PMC10600049 DOI: 10.1007/s10143-023-02177-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Objective cognitive function in patients with glioblastoma may depend on tumor location. Less is known about the potential impact of tumor location on cognitive function from the patients' perspective. This study aimed to investigate the association between patient-reported cognitive function and the location of glioblastoma using voxel-based lesion-symptom mapping. Patient-reported cognitive function was assessed with the European Organisation for Research and Treatment (EORTC) QLQ-C30 cognitive function subscale preoperatively and 1 month postoperatively. Semi-automatic tumor segmentations from preoperative MRI images with the corresponding EORTC QLQ-C30 cognitive function score were registered to a standardized brain template. Student's pooled-variance t-test was used to compare mean patient-reported cognitive function scores between those with and without tumors in each voxel. Both preoperative brain maps (n = 162) and postoperative maps of changes (n = 99) were developed. Glioblastomas around the superior part of the left lateral ventricle, the left lateral part of the thalamus, the left caudate nucleus, and a portion of the left internal capsule were significantly associated with reduced preoperative patient-reported cognitive function. However, no voxels were significantly associated with postoperative change in patient-reported cognitive function assessed 1 month postoperatively. There seems to be an anatomical relation between tumor location and patient-reported cognitive function before surgery, with the left hemisphere being the dominant from the patients' perspective.
Collapse
Affiliation(s)
- Stine Schei
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Mauritz Hansens Gate 2, 7030, Trondheim, Norway.
- Department of Neurology, St. Olavs hospital, Trondheim, Norway.
| | - Lisa Millgård Sagberg
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Mauritz Hansens Gate 2, 7030, Trondheim, Norway
- Department of Neurosurgery, St. Olavs hospital, Trondheim, Norway
| | - Lars Eirik Bø
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
10
|
Pasquini L, Peck KK, Jenabi M, Holodny A. Functional MRI in Neuro-Oncology: State of the Art and Future Directions. Radiology 2023; 308:e222028. [PMID: 37668519 PMCID: PMC10546288 DOI: 10.1148/radiol.222028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.
Collapse
Affiliation(s)
- Luca Pasquini
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Kyung K. Peck
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Mehrnaz Jenabi
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Andrei Holodny
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| |
Collapse
|
11
|
Quinones A, Jenabi M, Pasquini L, Peck KK, Moss NS, Brennan C, Tabar V, Holodny A. Use of longitudinal functional MRI to demonstrate translocation of language function in patients with brain tumors. J Neurosurg 2023; 139:29-37. [PMID: 36433876 PMCID: PMC11999724 DOI: 10.3171/2022.10.jns221212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The ability of functional MRI (fMRI) to localize patient-specific eloquent areas has proved worthwhile in efforts to maximize resection while minimizing risk of iatrogenic damage in patients with brain tumors. Although cortical reorganization has been described, the frequency of its occurrence and the factors that influence incidence are not well understood. The authors investigated changes in language laterality between 2 fMRI studies in patients with brain tumors to elucidate factors contributing to cortical reorganization. METHODS The authors analyzed 33 patients with brain tumors involving eloquent language areas who underwent 2 separate presurgical, language task-based fMRI examinations (fMRI1 and fMRI2). Pathology consisted of low-grade glioma (LGG) in 15, and high-grade glioma (HGG) in 18. The mean time interval between scans was 35 ± 38 months (mean ± SD). Regions of interest were drawn for Broca's area (BA) and the contralateral BA homolog. The laterality index (LI) was calculated and categorized as follows: > 0.2, left dominance; 0.2 to -0.2, codominance; and < -0.2, right dominance. Translocation of language function was defined as a shift across one of these thresholds between the 2 scans. Comparisons between the 2 groups, translocation of language function (reorganized group) versus no translocation (constant group), were performed using the Mann-Whitney U-test. RESULTS Nine (27%) of 33 patients demonstrated translocation of language function. Eight of 9 patients with translocation had tumor involvement of BA, compared to 5/24 patients without translocation (p < 0.0001). There was no difference in LI between the 2 groups at fMRI1. However, the reorganized group showed a decreased LI at fMRI2 compared to the constant group (-0.1 vs 0.53, p < 0.01). The reorganized cohort showed a significant difference between LI1 and LI2 (0.50 vs -0.1, p < 0.0001) whereas the constant cohort did not. A longer time interval was found in the reorganized group between fMRI1 and fMRI2 for patients with LGG (34 vs 107 months, p < 0.002). Additionally, the reorganized cohort had a greater proportion of local tumor invasion into eloquent areas at fMRI2 than the constant group. Aphasia was present following fMRI2 in 13/24 (54%) patients who did not exhibit translocation, compared to 2/9 (22%) patients who showed translocation. CONCLUSIONS Translocation of language function in patients with brain tumor is associated with tumor involvement of BA, longer time intervals between scans, and is seen in both LGG and HGG. The reduced incidence of aphasia in the reorganized group raises the possibility that reorganization supports the conservation of language function. Therefore, longitudinal fMRI is useful because it may point to reorganization and could affect therapeutic planning for patients.
Collapse
Affiliation(s)
- Addison Quinones
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
| | - Luca Pasquini
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Kyung K. Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York
| | - Nelson S. Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York
- Department of Radiology, Joan & Sanford I. Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
12
|
BOLD fMRI and DTI fiber tracking for preoperative mapping of eloquent cerebral regions in brain tumor patients: impact on surgical approach and outcome. Neurol Sci 2023:10.1007/s10072-023-06667-2. [PMID: 36914833 DOI: 10.1007/s10072-023-06667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Task-based BOLD fMRI and DTI-fiber tracking have become part of the routine presurgical work-up of brain tumor patients in many institutions. However, their potential impact on both surgical treatment and neurologic outcome remains unclear, in despite of the high costs and complex implementation. METHODS We retrospectively investigated whether performing fMRI and DTI-ft preoperatively substantially impacted surgical planning and patient outcome in a series of brain tumor patients. We assessed (i) the quality of fMRI and DTI-ft results, by using a scale of 0-2 (0 = failed mapping; 1 = intermediate confidence; 2 = good confidence), (ii) whether functional planning substantially contributed to defining the surgical strategy to be undertaken (i.e., no surgery, biopsy, or resection, with or without ESM), the surgical entry point and extent of resection, and (iii) the incidence of neurological deficits post-operatively. RESULTS Twenty-seven patients constituted the study population. The mean confidence rating was 1.9/2 for fMRI localization of the eloquent cortex and lateralization of the language function and 1.7/2 for DTI-ft results. Treatment strategy was altered in 33% (9/27) of cases. Surgical entry point was modified in 8% (2/25) of cases. The extent of resection was modified in 40% (10/25). One patient (1/25, 4%) developed one new functional deficit post-operatively. CONCLUSION Functional MR mapping - which must not be considered an alternative to ESM - has a critical role preoperatively, potentially modifying treatment strategy or increasing the neurosurgeons' confidence in the surgical approach hypothesized based on conventional imaging.
Collapse
|
13
|
Pasquini L, Peck KK, Tao A, Del Ferraro G, Correa DD, Jenabi M, Kobylarz E, Zhang Z, Brennan C, Tabar V, Makse H, Holodny AI. Longitudinal Evaluation of Brain Plasticity in Low-Grade Gliomas: fMRI and Graph-Theory Provide Insights on Language Reorganization. Cancers (Basel) 2023; 15:cancers15030836. [PMID: 36765795 PMCID: PMC9913404 DOI: 10.3390/cancers15030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Language reorganization may represent an adaptive phenomenon to compensate tumor invasion of the dominant hemisphere. However, the functional changes over time underlying language plasticity remain unknown. We evaluated language function in patients with low-grade glioma (LGG), using task-based functional MRI (tb-fMRI), graph-theory and standardized language assessment. We hypothesized that functional networks obtained from tb-fMRI would show connectivity changes over time, with increased right-hemispheric participation. We recruited five right-handed patients (4M, mean age 47.6Y) with left-hemispheric LGG. Tb-fMRI and language assessment were conducted pre-operatively (pre-op), and post-operatively: post-op1 (4-8 months), post-op2 (10-14 months) and post-op3 (16-23 months). We computed the individual functional networks applying optimal percolation thresholding. Language dominance and hemispheric connectivity were quantified by laterality indices (LI) on fMRI maps and connectivity matrices. A fixed linear mixed model was used to assess the intra-patient correlation trend of LI values over time and their correlation with language performance. Individual networks showed increased inter-hemispheric and right-sided connectivity involving language areas homologues. Two patterns of language reorganization emerged: Three/five patients demonstrated a left-to-codominant shift from pre-op to post-op3 (type 1). Two/five patients started as atypical dominant at pre-op, and remained unchanged at post-op3 (type 2). LI obtained from tb-fMRI showed a significant left-to-right trend in all patients across timepoints. There were no significant changes in language performance over time. Type 1 language reorganization may be related to the treatment, while type 2 may be tumor-induced, since it was already present at pre-op. Increased inter-hemispheric and right-side connectivity may represent the initial step to develop functional plasticity.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy
- Correspondence:
| | - Kyung K. Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alice Tao
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gino Del Ferraro
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Denise D. Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erik Kobylarz
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hernán Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
14
|
Anwar A, Radwan A, Zaky I, El Ayadi M, Youssef A. Resting state fMRI brain mapping in pediatric supratentorial brain tumors. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Functional mapping of eloquent brain areas is crucial for preoperative planning in patients with brain tumors. Resting state functional MRI (rs-fMRI) allows the localization of functional brain areas without the need for task performance, making it well-suited for the pediatric population. In this study the independent component analysis (ICA) rs-fMRI functional mapping results are reported in a group of 22 pediatric patients with supratentorial brain tumors. Additionally, the functional connectivity (FC) maps of the sensori-motor network (SMN) obtained using ICA and seed-based analysis (SBA) are compared.
Results
Different resting state networks (RSNs) were extracted using ICA with varying levels of sensitivity, notably, the SMN was identified in 100% of patients, followed by the Default mode network (DMN) (91%) and Language networks (80%). Additionally, FC maps of the SMN extracted by SBA were more extensive (mean volume = 25,288.36 mm3, standard deviation = 13,364.36 mm3) than those found on ICA (mean volume = 13,403.27 mm3, standard deviation = 9755.661 mm3). This was confirmed by statistical analysis using a Wilcoxon signed rank t test at p < 0.01.
Conclusions
Results clearly demonstrate the successful applicability of rs-fMRI for localizing different functional brain networks in the preoperative assessment of brain areas, and thus represent a further step in the integration of computational radiology research in a clinical setting.
Collapse
|
15
|
Holodny AI. Resting-State Functional MRI Changes in Normal Human Aging. Radiology 2022; 304:633-634. [PMID: 35503020 PMCID: PMC9434810 DOI: 10.1148/radiol.220201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Andrei I. Holodny
- From the Department of Radiology, Memorial Sloan Kettering Cancer
Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Weill
Medical College of Cornell University, New York, NY; and Department of
Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York,
NY
| |
Collapse
|
16
|
Muir M, Patel R, Traylor J, de Almeida Bastos DC, Prinsloo S, Liu HL, Noll K, Wefel J, Tummala S, Kumar V, Prabhu S. Validation of Non-invasive Language Mapping Modalities for Eloquent Tumor Resection: A Pilot Study. Front Neurosci 2022; 16:833073. [PMID: 35299624 PMCID: PMC8923233 DOI: 10.3389/fnins.2022.833073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have established a link between extent of resection and survival in patients with gliomas. Surgeons must optimize the oncofunctional balance by maximizing the extent of resection and minimizing postoperative neurological morbidity. Preoperative functional imaging modalities are important tools for optimizing the oncofunctional balance. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) are non-invasive imaging modalities that can be used for preoperative functional language mapping. Scarce data exist evaluating the accuracy of these preoperative modalities for language mapping compared with gold standard intraoperative data in the same cohort. This study compares the accuracy of fMRI and TMS for language mapping compared with intraoperative direct cortical stimulation (DCS). We also identified significant predictors of preoperative functional imaging accuracy, as well as significant predictors of functional outcomes. Evidence from this study could inform clinical judgment as well as provide neuroscientific insight. We used geometric distances to determine copositivity between preoperative data and intraoperative data. Twenty-eight patients were included who underwent both preoperative fMRI and TMS procedures, as well as an awake craniotomy and intraoperative language mapping. We found that TMS shows significantly superior correlation to intraoperative DCS compared with fMRI. TMS also showed significantly higher sensitivity and negative predictive value than specificity and positive predictive value. Poor cognitive baseline was associated with decreased TMS accuracy as well as increased risk for worsened aphasia postoperatively. TMS has emerged as a promising preoperative language mapping tool. Future work should be done to identify the proper role of each imaging modality in a comprehensive, multimodal approach to optimize the oncofunctional balance.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rajan Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyle Noll
- Department of Neuropsychology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey Wefel
- Department of Neuropsychology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vinodh Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Sujit Prabhu,
| |
Collapse
|
17
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|
18
|
Abstract
As the epidemiological and clinical burden of brain metastases continues to grow, advances in neurosurgical care are imperative. From standard magnetic resonance imaging (MRI) sequences to functional neuroimaging, preoperative workups for metastatic disease allow high-resolution detection of lesions and at-risk structures, facilitating safe and effective surgical planning. Minimally invasive neurosurgical approaches, including keyhole craniotomies and tubular retractors, optimize the preservation of normal parenchyma without compromising extent of resection. Supramarginal surgery has pushed the boundaries of achieving complete removal of metastases without recurrence, especially in eloquent regions when paired with intraoperative neuromonitoring. Brachytherapy has highlighted the potential of locally delivering therapeutic agents to the resection cavity with high rates of local control. Neuronavigation has become a cornerstone of operative workflow, while intraoperative ultrasound (iUS) and intraoperative brain mapping generate real-time renderings of the brain unaffected by brain shift. Endoscopes, exoscopes, and fluorescent-guided surgery enable increasingly high-definition visualizations of metastatic lesions that were previously difficult to achieve. Pushed forward by these multidisciplinary innovations, neurosurgery has never been a safer, more effective treatment for patients with brain metastases.
Collapse
Affiliation(s)
- Patrick R Ng
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|