1
|
Tao Y, Lv Z, Liu W, Qi H, Hu P. Recurrent neural network-based simultaneous cardiac T1, T2, and T1ρ mapping. NMR IN BIOMEDICINE 2024; 37:e5133. [PMID: 38520183 DOI: 10.1002/nbm.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/25/2024]
Abstract
The purpose of the current study was to explore the feasibility of training a deep neural network to accelerate the process of generating T1, T2, and T1ρ maps for a recently proposed free-breathing cardiac multiparametric mapping technique, where a recurrent neural network (RNN) was utilized to exploit the temporal correlation among the multicontrast images. The RNN-based model was developed for rapid and accurate T1, T2, and T1ρ estimation. Bloch simulation was performed to simulate a dataset of more than 10 million signals and time correspondences with different noise levels for network training. The proposed RNN-based method was compared with a dictionary-matching method and a conventional mapping method to evaluate the model's effectiveness in phantom and in vivo studies at 3 T, respectively. In phantom studies, the RNN-based method and the dictionary-matching method achieved similar accuracy and precision in T1, T2, and T1ρ estimations. In in vivo studies, the estimated T1, T2, and T1ρ values obtained by the two methods achieved similar accuracy and precision for 10 healthy volunteers (T1: 1228.70 ± 53.80 vs. 1228.34 ± 52.91 ms, p > 0.1; T2: 40.70 ± 2.89 vs. 41.19 ± 2.91 ms, p > 0.1; T1ρ: 45.09 ± 4.47 vs. 45.23 ± 4.65 ms, p > 0.1). The RNN-based method can generate cardiac multiparameter quantitative maps simultaneously in just 2 s, achieving 60-fold acceleration compared with the dictionary-matching method. The RNN-accelerated method offers an almost instantaneous approach for reconstructing accurate T1, T2, and T1ρ maps, being much more efficient than the dictionary-matching method for the free-breathing multiparametric cardiac mapping technique, which may pave the way for inline mapping in clinical applications.
Collapse
Affiliation(s)
- Yiming Tao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Zhenfeng Lv
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Wenjian Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Haikun Qi
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Lyu Z, Hua S, Xu J, Shen Y, Guo R, Hu P, Qi H. Free-breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching. J Cardiovasc Magn Reson 2023; 25:63. [PMID: 37946191 PMCID: PMC10636995 DOI: 10.1186/s12968-023-00973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND T1, T2 and T1ρ are well-recognized parameters for quantitative cardiac MRI. Simultaneous estimation of these parameters allows for comprehensive myocardial tissue characterization, such as myocardial fibrosis and edema. However, conventional techniques either quantify the parameters individually with separate breath-hold acquisitions, which may result in unregistered parameter maps, or estimate multiple parameters in a prolonged breath-hold acquisition, which may be intolerable to patients. We propose a free-breathing multi-parametric mapping (FB-MultiMap) technique that provides co-registered myocardial T1, T2 and T1ρ maps in a single efficient acquisition. METHODS The proposed FB-MultiMap performs electrocardiogram-triggered single-shot Cartesian acquisition over 16 consecutive cardiac cycles, where inversion, T2 and T1ρ preparations are introduced for varying contrasts. A diaphragmatic navigator was used for prospective through-plane motion correction and the in-plane motion was corrected retrospectively with a group-wise image registration method. Quantitative mapping was conducted through dictionary matching of the motion corrected images, where the subject-specific dictionary was created using Bloch simulations for a range of T1, T2 and T1ρ values, as well as B1 factors to account for B1 inhomogeneities. The FB-MultiMap was optimized and validated in numerical simulations, phantom experiments, and in vivo imaging of 15 healthy subjects and six patients with suspected cardiac diseases. RESULTS The phantom T1, T2 and T1ρ values estimated with FB-MultiMap agreed well with reference measurements with no dependency on heart rate. In healthy subjects, FB-MultiMap T1 was higher than MOLLI T1 mapping (1218 ± 50 ms vs. 1166 ± 38 ms, p < 0.001). The myocardial T2 and T1ρ estimated with FB-MultiMap were lower compared to the mapping with T2- or T1ρ-prepared 2D balanced steady-state free precession (T2: 41.2 ± 2.8 ms vs. 42.5 ± 3.1 ms, p = 0.06; T1ρ: 45.3 ± 4.4 ms vs. 50.2 ± 4.0, p < 0.001). The pathological changes in myocardial parameters measured with FB-MultiMap were consistent with conventional techniques in all patients. CONCLUSION The proposed free-breathing multi-parametric mapping technique provides co-registered myocardial T1, T2 and T1ρ maps in 16 heartbeats, achieving similar mapping quality to conventional breath-hold mapping methods.
Collapse
Affiliation(s)
- Zhenfeng Lyu
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Sha Hua
- Department of Cardiovascular Medicine, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- UIH America, Inc., Houston, TX, USA
| | - Yiwen Shen
- Department of Cardiovascular Medicine, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, 4th Floor, BME Building, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
3
|
Donati F, Myerson S, Bissell MM, Smith NP, Neubauer S, Monaghan MJ, Nordsletten DA, Lamata P. Beyond Bernoulli: Improving the Accuracy and Precision of Noninvasive Estimation of Peak Pressure Drops. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.005207. [PMID: 28093412 PMCID: PMC5265685 DOI: 10.1161/circimaging.116.005207] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/22/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). METHODS AND RESULTS We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier-Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%-136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. CONCLUSIONS The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data.
Collapse
Affiliation(s)
- Fabrizio Donati
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Saul Myerson
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Malenka M Bissell
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Nicolas P Smith
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Stefan Neubauer
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Mark J Monaghan
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - David A Nordsletten
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.)
| | - Pablo Lamata
- From the King's College London, Division of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, The Rayne Institute, United Kingdom (F.D., N.P.S., D.A.N., P.L.); Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.M., M.M.B., S.N.); University of Auckland, New Zealand (N.P.S.); and Department of Non Invasive Cardiology, King's College Hospital, London, United Kingdom (M.J.M.).
| |
Collapse
|
4
|
Functional Assessment of Bioprosthetic Aortic Valves by CMR. JACC Cardiovasc Imaging 2016; 9:785-793. [PMID: 27184505 DOI: 10.1016/j.jcmg.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/27/2015] [Accepted: 08/20/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate cardiac magnetic resonance (CMR) phase-contrast (PC) measures of a bioprosthetic aortic valve velocity time integral (PC-VTI) to derive the effective orifice area (PC-EOA) and to compare these findings with the clinical standard of Doppler echocardiography. BACKGROUND Bioprosthetic aortic valve function can be assessed with CMR planimetry of the anatomic orifice area and PC measurement of peak transvalvular systolic velocity. However, bioprosthetic valves can create image artifact and data dropout, which makes planimetry measures a challenge for even experienced CMR readers. METHODS From our institutional database, we identified 38 patients who had undergone 47 paired imaging studies (CMR and Doppler) within 46 days (median 3 days). Transvalvular forward flow volume by CMR was determined by 3 methods: ascending aorta flow, transvalvular flow, and left ventricular stroke volume. PC-EOA was derived as flow divided by PC-VTI, calculated with a semiautomated MATLAB (Mathworks, Natick, Massachusetts) application for integration of the instantaneous peak transvalvular velocity. Doppler EOA was assessed by the continuity method. RESULTS PC-EOA by all 3 flow approaches demonstrated a strong correlation with Doppler EOA (r = 0.949, 0.947, and 0.874, respectively; all p < 0.001) and revealed good agreement (bias = 0.03, 0.03, and 0.28 cm(2), respectively). With Doppler-derived EOA as the reference standard, CMR was able to correctly characterize 24 of 26 valves as normal (EOA >1.2 cm(2)), 12 of 14 possibly stenotic valves (0.8 < EOA < 1.2 cm(2)), and 5 of 7 stenotic valves (EOA <0.8 cm(2); k = 0.826). CONCLUSIONS We describe a new CMR-based method to derive the EOA for bioprosthetic aortic valves. This method compares favorably to traditional Doppler methods and might be an important additional parameter in the evaluation of prosthetic valves by CMR, particularly when Doppler methods are suboptimal or considered discordant with the clinical presentation.
Collapse
|
5
|
Suchá D, Symersky P, Tanis W, Mali WP, Leiner T, van Herwerden LA, Budde RP. Multimodality Imaging Assessment of Prosthetic Heart Valves. Circ Cardiovasc Imaging 2015; 8:e003703. [DOI: 10.1161/circimaging.115.003703] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Echocardiography and fluoroscopy are the main techniques for prosthetic heart valve (PHV) evaluation, but because of specific limitations they may not identify the morphological substrate or the extent of PHV pathology. Cardiac computed tomography (CT) and magnetic resonance imaging (MRI) have emerged as new potential imaging modalities for valve prostheses. We present an overview of the possibilities and pitfalls of CT and MRI for PHV assessment based on a systematic literature review of all experimental and patient studies. For this, a comprehensive systematic search was performed in PubMed and Embase on March 24, 2015, containing CT/MRI and PHV synonyms. Our final selection yielded 82 articles on surgical valves. CT allowed adequate assessment of most modern PHVs and complemented echocardiography in detecting the obstruction cause (pannus or thrombus), bioprosthesis calcifications, and endocarditis extent (valve dehiscence and pseudoaneurysms). No clear advantage over echocardiography was found for the detection of vegetations or periprosthetic regurgitation. Whereas MRI metal artifacts may preclude direct prosthesis analysis, MRI provided information on PHV-related flow patterns and velocities. MRI demonstrated abnormal asymmetrical flow patterns in PHV obstruction and allowed prosthetic regurgitation assessment. Hence, CT shows great clinical relevance as a complementary imaging tool for the diagnostic work-up of patients with suspected PHV obstruction and endocarditis. MRI shows potential for functional PHV assessment although more studies are required to provide diagnostic reference values to allow discrimination of normal from pathological conditions.
Collapse
Affiliation(s)
- Dominika Suchá
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - Petr Symersky
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - W. Tanis
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - Willem P.Th.M. Mali
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - Tim Leiner
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - Lex A. van Herwerden
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| | - Ricardo P.J. Budde
- From the Departments of Radiology (D.S., W.P.Th.M.M., T.L., R.P.J.B.) and Cardiothoracic Surgery (L.A.v.H.), University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands (P.S.); Department of Cardiology, HagaZiekenhuis, The Hague, The Netherlands (W.T.); and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands (R.P.J.B.)
| |
Collapse
|
6
|
Helbing WA, Ouhlous M. Cardiac magnetic resonance imaging in children. Pediatr Radiol 2015; 45:20-6. [PMID: 25552387 DOI: 10.1007/s00247-014-3175-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/30/2014] [Accepted: 08/22/2014] [Indexed: 02/05/2023]
Abstract
MRI is an important additional tool in the diagnostic work-up of children with congenital heart disease. This review aims to summarise the role MRI has in this patient population. Echocardiography remains the main diagnostic tool in congenital heart disease. In specific situations, MRI is used for anatomical imaging of congenital heart disease. This includes detailed assessment of intracardiac anatomy with 2-D and 3-D sequences. MRI is particularly useful for assessment of retrosternal structures in the heart and for imaging large vessel anatomy. Functional assessment includes assessment of ventricular function using 2-D cine techniques. Of particular interest in congenital heart disease is assessment of right and single ventricular function. Two-dimensional and newer 3-D techniques to quantify flow in these patients are or will soon become an integral part of quantification of shunt size, valve function and complex flow patterns in large vessels. More advanced uses of MRI include imaging of cardiovascular function during stress and tissue characterisation of the myocardium. Techniques used for this purpose need further validation before they can become part of the daily routine of MRI assessment of congenital heart disease.
Collapse
Affiliation(s)
- Willem A Helbing
- Department of Radiology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands,
| | | |
Collapse
|
7
|
Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, Kim YJ, Choi EY. 2014 korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the korean society of cardiology and the korean society of radiology. Korean Circ J 2014; 44:359-85. [PMID: 25469139 PMCID: PMC4248609 DOI: 10.4070/kcj.2014.44.6.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/19/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology.
Collapse
Affiliation(s)
- Yeonyee E Yoon
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoo Jin Hong
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Kwan Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeong A Kim
- Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Jin Oh Na
- Cardiovascular Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Young Choi
- Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, Kim YJ, Choi EY, The Korean Society of Cardiology and the Korean Society of Radiology. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol 2014; 15:659-88. [PMID: 25469078 PMCID: PMC4248622 DOI: 10.3348/kjr.2014.15.6.659] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology.
Collapse
Affiliation(s)
- Yeonyee E Yoon
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Yoo Jin Hong
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyung-Kwan Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Jeong A Kim
- Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 411-706, Korea
| | - Jin Oh Na
- Cardiovascular Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Young Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Eui-Young Choi
- Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Korea
| | | |
Collapse
|
9
|
Basha TA, Roujol S, Kissinger KV, Goddu B, Berg S, Manning WJ, Nezafat R. Free-breathing cardiac MR stress perfusion with real-time slice tracking. Magn Reson Med 2014; 72:689-98. [PMID: 24123153 PMCID: PMC3979504 DOI: 10.1002/mrm.24977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. METHODS We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. RESULTS The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. CONCLUSION The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans.
Collapse
Affiliation(s)
- Tamer A. Basha
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Sébastien Roujol
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Kraig V. Kissinger
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Sophie Berg
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Warren J. Manning
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Kahlert P, Parohl N, Albert J, Schäfer L, Reinhardt R, Kaiser GM, McDougall I, Decker B, Plicht B, Erbel R, Eggebrecht H, Ladd ME, Quick HH. Towards real-time cardiovascular magnetic resonance guided transarterial CoreValve implantation: in vivo evaluation in swine. J Cardiovasc Magn Reson 2012; 14:21. [PMID: 22453050 PMCID: PMC3337256 DOI: 10.1186/1532-429x-14-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/27/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. METHODS rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. RESULTS rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. CONCLUSIONS Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.
Collapse
Affiliation(s)
- Philipp Kahlert
- Department of Cardiology, West-German Heart Center Essen, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Nina Parohl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Juliane Albert
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Lena Schäfer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Renate Reinhardt
- Department of General, Visceral and Transplantation Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Gernot M Kaiser
- Department of General, Visceral and Transplantation Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Ian McDougall
- Evasc Medical Systems, 107-1099 West 8th Avenue, Vancouver, BC V6H 1C3, Canada
| | - Brad Decker
- Evasc Medical Systems, 107-1099 West 8th Avenue, Vancouver, BC V6H 1C3, Canada
| | - Björn Plicht
- Department of Cardiology, West-German Heart Center Essen, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Raimund Erbel
- Department of Cardiology, West-German Heart Center Essen, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Holger Eggebrecht
- Department of Cardiology, West-German Heart Center Essen, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Mark E Ladd
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Harald H Quick
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany
| |
Collapse
|
11
|
Kahlert P, Eggebrecht H, Plicht B, Kraff O, McDougall I, Decker B, Erbel R, Ladd ME, Quick HH. Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: in vitro evaluation and modification of existing devices. J Cardiovasc Magn Reson 2010; 12:58. [PMID: 20942968 PMCID: PMC2964701 DOI: 10.1186/1532-429x-12-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 10/13/2010] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI) featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve®) including their dedicated delivery devices and of a custom-built, CMR-compatible delivery device for the Medtronic CoreValve® prosthesis as an initial step towards real-time CMR-guided TAVI. METHODS The devices were systematically examined in phantom models on a 1.5-Tesla scanner using high-resolution T1-weighted 3D FLASH, real-time TrueFISP and flow-sensitive phase-contrast sequences. Images were analyzed for device visualization quality, device-related susceptibility artifacts, and radiofrequency signal shielding. RESULTS CMR revealed major susceptibility artifacts for the two commercial delivery devices caused by considerable metal braiding and precluding in vivo application. The stainless steel-based Edwards SAPIEN™ prosthesis was also regarded not suitable for CMR-guided TAVI due to susceptibility artifacts exceeding the valve's dimensions and hindering an exact placement. In contrast, the nitinol-based Medtronic CoreValve® prosthesis was excellently visualized with delineation even of small details and, thus, regarded suitable for CMR-guided TAVI, particularly since reengineering of its delivery device toward CMR-compatibility resulted in artifact elimination and excellent visualization during catheter movement and valve deployment on real-time TrueFISP imaging. Reliable flow measurements could be performed for both stent-valves after deployment using phase-contrast sequences. CONCLUSIONS The present study shows that the Medtronic CoreValve® prosthesis is potentially suited for real-time CMR-guided placement in vivo after suggested design modifications of the delivery system.
Collapse
Affiliation(s)
- Philipp Kahlert
- Department of Cardiology, West-German Heart Center Essen, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Holger Eggebrecht
- Department of Cardiology, West-German Heart Center Essen, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Björn Plicht
- Department of Cardiology, West-German Heart Center Essen, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Oliver Kraff
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Ian McDougall
- Evasc Medical Systems, 107-1099 West 8th Avenue, Vancouver, BC V6H 1C3, Canada
| | - Brad Decker
- Evasc Medical Systems, 107-1099 West 8th Avenue, Vancouver, BC V6H 1C3, Canada
| | - Raimund Erbel
- Department of Cardiology, West-German Heart Center Essen, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Mark E Ladd
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Harald H Quick
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany
| |
Collapse
|
12
|
Abstract
MRI has acquired over the years a role in the evaluation of cardiovascular pathology especially with regards to its ability to assess right and left ventricular function and delayed postcontrast "viability" sequences. Current class I clinical indications include: viability for patients with ischemic cardiomyopathy and acute coronary syndrome, etiology and prognostic evaluation of non-ischemic cardiomyopathies including myocarditis and arrhytmogenic right ventricular cardiomyopathy, chronic pericarditis and cardiac masses, non-urgent aortic aneurysm and dissection, congenital cardiopathies: vascular malformations and follow-up after curative or palliative surgery. MRI provides a complete non operator dependent evaluation, and is particularly useful for follow-up since it may be repeated due to its absence of ionizing radiation
Collapse
|
13
|
Indications cliniques appropriées de l’IRM en pathologie cardio-vasculaire. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2009. [DOI: 10.1016/s1878-6480(09)70353-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Garcia J, Kadem L, Larose E, Pibarot P. In vivo velocity and flow errors quantification by phase-contrast magnetic resonance imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:1377-80. [PMID: 19162924 DOI: 10.1109/iembs.2008.4649421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnetic resonance imaging is a very efficient tool for assessing velocity and flow in the cardiovascular system under normal and pathological conditions. However, this technique still has some limitations that produce different type of errors. In this study, velocities and flow were measured in vivo using phase-contrast method to determine the optimal number of phases allowing the minimization of the errors. The effect of velocity encoding upsampling was also investigated. The results showed that a number of phases between 16-24 is a good compromise to accurately estimate both ejection and regurgitant flows. Furthermore, a time shift effect caused by velocity encoding upsampling was found and a corrective linear model was proposed. These considerations may reduce flow and velocity measurement errors in normal and pathological conditions.
Collapse
Affiliation(s)
- J Garcia
- Laval Hospital Research Center, Laval University, Quebec, Canada.
| | | | | | | |
Collapse
|
15
|
Magnetic Resonance Imaging of Valvular Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Affiliation(s)
- Magdi H Yacoub
- Imperial College School of Medicine, Heart Science Centre, Harefield Research Foundation, Harefield, Middlesex, UK.
| | | |
Collapse
|
17
|
Paelinck BP, Lamb HJ, Bax JJ, van der Wall EE, de Roos A. MR flow mapping of dobutamine-induced changes in diastolic heart function. J Magn Reson Imaging 2004; 19:176-81. [PMID: 14745750 DOI: 10.1002/jmri.10448] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the ability of MR flow mapping to measure changes in left ventricular filling during beta-adrenergic stimulation. MATERIALS AND METHODS Mitral flow was measured in 10 healthy volunteers using conventional free breathing fast-field echo (FFE) with a spatial resolution of 2.7 x 2.2 mm and a temporal resolution of 22 msec. The sequence was repeated during dobutamine infusion (20 microg/kg/minute). RESULTS Stroke volume increased from a median of 99 mL (range: 68-142 mL) (Note: values as presented are medians and ranges, throughout) to 114 mL (87-180 mL) (P < 0.05). Both early (E) peak filling rate (554 mL/second [433-497 mL] to 651 mL/second [496-1096 mL/second]) (P < 0.05) and atrial (A) peak filling rate (238 mL/second [183-352 mL/second] to 341 mL/second [230-538 mL/second]) (P < 0.05) increased. These changes, together with the increase in E acceleration peak and A deceleration peak, were consistent with facilitated myocardial relaxation. CONCLUSION Conventional free breathing FFE has the ability to measure the effects of beta-adrenergic stimulation on left ventricular filling.
Collapse
|
18
|
Affiliation(s)
- Stephen J Karlik
- Department of Diagnostic Radiology and Nuclear Medicine, Rm. 2MR21, University of Western Ontario, London Health Sciences Center-University Campus, 339 Windermere Rd., London, Ontario N6A 5A5, Canada
| |
Collapse
|
19
|
Haugen BO, Berg S, Brecke KM, Torp H, Slørdahl SA, Skaerpe T, Samstad SO. Blood flow velocity profiles in the aortic annulus: a 3-dimensional freehand color flow Doppler imaging study. J Am Soc Echocardiogr 2002; 15:328-33. [PMID: 11944010 DOI: 10.1067/mje.2002.117292] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of a single sample volume in Doppler measurements of the velocity time integral (VTI) in the aortic annulus may introduce errors in calculations of stroke volumes, shunts, regurgitant fractions, and aortic valve area. To study the blood flow velocity distribution and assess this potential error, we used a dynamic 3-dimensional color flow Doppler imaging method. METHODS AND RESULTS Seventeen healthy volunteers were studied. The ultrasound data were captured from 10 to 20 heartbeats at a high frame rate (mean 57 frames per second) while freely tilting the transducer in the apical position. A magnetic position-sensor system recorded the spatial position and orientation of the probe. The raw digital ultrasound data were analyzed off-line with no loss of temporal resolution. Blood flow velocities were integrated across a spherical surface that tracked the aortic annulus during systole. The ratios of the systolic maximum to the systolic mean VTI ranged from 1.2 to 1.5 (mean 1.4). At the time of systolic peak flow, the ratios of the maximum to the mean velocity ranged from 1.1 to 2.0 (mean 1.5). The location of the maximum velocities and VTI showed individual variation. CONCLUSION The blood flow velocity profile was nonuniform. By using a single sample volume in Doppler measurements of the VTI in the aortic annulus, errors ranging from 20% to 50% may be introduced in calculations of stroke volumes.
Collapse
Affiliation(s)
- Bjørn Olav Haugen
- Departments of Cardiology and Lung Medicine, Norwegian University of Science and Technology, University Hospital of Trondheim, Olav Kyrres gt 17, N-7006 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
20
|
Beckmann N, Gentsch C, Baumann D, Bruttel K, Vassout A, Schoeffter P, Loetscher E, Bobadilla M, Perentes E, Rudin M. Current awareness. NMR IN BIOMEDICINE 2001; 14:217-222. [PMID: 11357188 DOI: 10.1002/nbm.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- N Beckmann
- Core Technologies Area, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|