1
|
Almeida FC, Pereira AI, Mendes-Pinto C, Lopes J, Moura J, Sousa JM, Videira G, Samões R, Oliveira TG. MR Imaging Findings in Anti-Leucine-Rich Glioma Inactivated Protein 1 Encephalitis: A Systematic Review and Meta-analysis. AJNR Am J Neuroradiol 2024; 45:977-986. [PMID: 38871367 DOI: 10.3174/ajnr.a8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Antibodies against leucine-rich glioma inactivated protein 1 (LGI1) constitute a common form of autoimmune encephalitis. On MR imaging, it may show T2 FLAIR hyperintensities of the medial temporal lobe (T2 FLAIR-MTL), involve the basal ganglia, or be unremarkable. PURPOSE We performed a systematic review and meta-analysis to obtain prevalence estimates of abnormal findings on MR imaging in anti-LGI1 encephalitis. A human brain map of the LGI1 microarray gene expression was derived from the Allen Human Brain Atlas. DATA SOURCES PubMed and Web of Science were searched with the terms "LGI1" and "encephalitis" from inception to April 7, 2022. STUDY SELECTION Thirty-one research publications, encompassing case series and retrospective cohort and case-control studies, with >10 patients with anti-LGI1 encephalitis and MR imaging data were included. DATA ANALYSIS Pooled prevalence estimates were calculated using Freeman-Tukey double-arcsine transformation. Meta-analysis used DerSimonian and Laird random effects models. DATA SYNTHESIS Of 1318 patients in 30 studies, T2 FLAIR-MTL hyperintensities were present in 54% (95% CI, 0.48-0.60; I2 = 76%). Of 394 patients in 13 studies, 27% showed bilateral (95% CI, 0.19-0.36; I2 = 71%) and 24% unilateral T2 FLAIR-MTL abnormalities (95% CI, 0.17-0.32; I2 = 61%). Of 612 patients in 15 studies, basal ganglia abnormalities were present in 10% (95% CI, 0.06-0.15; I2 = 67%). LGI1 expression was highest in the amygdala, hippocampus, and caudate nucleus. LIMITATIONS Only part of the spectrum of MR imaging abnormalities in anti-LGI1 encephalitis could be included in a meta-analysis. MR imaging findings were not the main outcomes in most studies, limiting available information. I2 values ranged from 62% to 76%, representing moderate-to-large heterogeneity. CONCLUSIONS T2 FLAIR-MTL hyperintensities were present in around one-half of patients with anti-LGI1. The prevalence of unilateral and bilateral presentations was similar, suggesting unilaterality should raise the suspicion of this disease in the appropriate clinical context. Around 10% of patients showed basal ganglia abnormalities, indicating that special attention should be given to this region. LGI1 regional expression coincided with the most frequently reported abnormal findings on MR imaging. Regional specificity might be partially determined by expression levels of the target protein.
Collapse
Affiliation(s)
- Francisco C Almeida
- From the Department of Neuroradiology (F.C.A., A.I.P., C.M.-P.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Life and Health Sciences Research Institute (F.C.A., T.G.O.), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory (F.C.A., T.G.O.), Braga/Guimarães, Portugal
| | - Ana I Pereira
- From the Department of Neuroradiology (F.C.A., A.I.P., C.M.-P.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Catarina Mendes-Pinto
- From the Department of Neuroradiology (F.C.A., A.I.P., C.M.-P.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Joana Lopes
- Department of Neurology (J.L., J.M., G.V., R.S.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - João Moura
- Department of Neurology (J.L., J.M., G.V., R.S.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - José Maria Sousa
- Department of Neuroradiology (J.M.S.), Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Gonçalo Videira
- Department of Neurology (J.L., J.M., G.V., R.S.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Raquel Samões
- Department of Neurology (J.L., J.M., G.V., R.S.), Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (R.S.), Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, Porto, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (F.C.A., T.G.O.), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory (F.C.A., T.G.O.), Braga/Guimarães, Portugal
- Department of Neuroradiology (T.G.O.), Hospital de Braga, Braga, Portugal
| |
Collapse
|
2
|
Cui F, Li H, Cao Y, Wang W, Zhang D. The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure. Nutrients 2024; 16:1284. [PMID: 38732531 PMCID: PMC11085529 DOI: 10.3390/nu16091284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Few studies have examined dietary protein intake and sources, in combination with longitudinal changes in brain structure markers. Our study aimed to examine the association between dietary protein intake and different sources of dietary protein, with the longitudinal rate of change in brain structural markers. A total of 2723 and 2679 participants from the UK Biobank were separately included in the analysis. The relative and absolute amounts of dietary protein intake were calculated using a 24 h dietary recall questionnaire. The longitudinal change rates of brain structural biomarkers were computed using two waves of brain imaging data. The average interval between the assessments was three years. We utilized multiple linear regression to examine the association between dietary protein and different sources and the longitudinal changes in brain structural biomarkers. Restrictive cubic splines were used to explore nonlinear relationships, and stratified and sensitivity analyses were conducted. Increasing the proportion of animal protein in dietary protein intake was associated with a slower reduction in the total hippocampus volume (THV, β: 0.02524, p < 0.05), left hippocampus volume (LHV, β: 0.02435, p < 0.01) and right hippocampus volume (RHV, β: 0.02544, p < 0.05). A higher intake of animal protein relative to plant protein was linked to a lower atrophy rate in the THV (β: 0.01249, p < 0.05) and LHV (β: 0.01173, p < 0.05) and RHV (β: 0.01193, p < 0.05). Individuals with a higher intake of seafood exhibited a higher longitudinal rate of change in the HV compared to those that did not consume seafood (THV, β: 0.004514; p < 0.05; RHV, β: 0.005527, p < 0.05). In the subgroup and sensitivity analyses, there were no significant alterations. A moderate increase in an individual's intake and the proportion of animal protein in their diet, especially from seafood, is associated with a lower atrophy rate in the hippocampus volume.
Collapse
Affiliation(s)
- Fusheng Cui
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Huihui Li
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Yi Cao
- Biomedical Center, Qingdao University, Qingdao 266021, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (F.C.); (H.L.); (D.Z.)
| |
Collapse
|
3
|
Angu Bala Ganesh KSV, Soman S, Reginald SR, Yamunadevi A, Yadav OP. Ultrastructural Changes of Synapses in the Hippocampus of Sprague Dawley Rat Brain following Exposure to Naphthalene Balls. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1522-S1525. [PMID: 38882886 PMCID: PMC11174248 DOI: 10.4103/jpbs.jpbs_1184_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 06/18/2024] Open
Abstract
Introduction The synaptic contacts play an important role in central nervous system (CNS) functioning. Ultrastructural features of synapses in CNS are not studied in naphthalene neurotoxicity model. Materials and Methodology In the present work, transmission electron microscopy was used for studying the ultrastructural features of synapses in the hippocampus of Sprague Dawley rat brain, on subsequent exposure to naphthalene balls. The ultrastructural changes were observed for naphthalene low dose (200 mg), high dose (400 mg) after the treatment for 28 days, and post-delayed toxicity phase after 14 days in Sprague Dawley rats. Results In comparison with different groups of naphthalene exposure including control and satellite, axon degeneration, axonal demyelination and abnormal synapses was observed in high dose naphthalene administration group. In the post-delayed naphthalene toxicity group, degeneration of synaptic contacts was observed. Conclusions This exploration of ultrastructural variations in the synapses of Hippocampus gives information that will be valued in naphthalene neurotoxicological research.
Collapse
Affiliation(s)
| | - Sharath Soman
- Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
| | - Sharon Roshin Reginald
- Department of Pathology, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil Nadu, India
| | - Andamuthu Yamunadevi
- Department of Oral Pathology and Microbiology, Nandha Dental College and Hospital, Erode, Tamil Nadu, India
| | - Omnath P Yadav
- Department of Physiology, CU Shah Medical College, Surendranagar, Gujarat, India
| |
Collapse
|
4
|
Liu R, Gong G, Meng K, Du S, Yin Y. Hippocampal sparing in whole-brain radiotherapy for brain metastases: controversy, technology and the future. Front Oncol 2024; 14:1342669. [PMID: 38327749 PMCID: PMC10847568 DOI: 10.3389/fonc.2024.1342669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Whole-brain radiotherapy (WBRT) plays an irreplaceable role in the treatment of brain metastases (BMs), but cognitive decline after WBRT seriously affects patients' quality of life. The development of cognitive dysfunction is closely related to hippocampal injury, but standardized criteria for predicting hippocampal injury and dose limits for hippocampal protection have not yet been developed. This review systematically reviews the clinical efficacy of hippocampal avoidance - WBRT (HA-WBRT), the controversy over dose limits, common methods and characteristics of hippocampal imaging and segmentation, differences in hippocampal protection by common radiotherapy (RT) techniques, and the application of artificial intelligence (AI) and radiomic techniques for hippocampal protection. In the future, the application of new techniques and methods can improve the consistency of hippocampal dose limit determination and the prediction of the occurrence of cognitive dysfunction in WBRT patients, avoiding the occurrence of cognitive dysfunction in patients and thus benefiting more patients with BMs.
Collapse
Affiliation(s)
- Rui Liu
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - GuanZhong Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - KangNing Meng
- Department of Graduate, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - ShanShan Du
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Lang M, Colby S, Ashby-Padial C, Bapna M, Jaimes C, Rincon SP, Buch K. An imaging review of the hippocampus and its common pathologies. J Neuroimaging 2024; 34:5-25. [PMID: 37872430 DOI: 10.1111/jon.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The hippocampus is a complex structure located in the mesial temporal lobe that plays a critical role in cognitive and memory-related processes. The hippocampal formation consists of the dentate gyrus, hippocampus proper, and subiculum, and its importance in the neural circuitry makes it a key anatomic structure to evaluate in neuroimaging studies. Advancements in imaging techniques now allow detailed assessment of hippocampus internal architecture and signal features that has improved identification and characterization of hippocampal abnormalities. This review aims to summarize the neuroimaging features of the hippocampus and its common pathologies. It provides an overview of the hippocampal anatomy on magnetic resonance imaging and discusses how various imaging techniques can be used to assess the hippocampus. The review explores neuroimaging findings related to hippocampal variants (incomplete hippocampal inversion, sulcal remnant and choroidal fissure cysts), and pathologies of neoplastic (astrocytoma and glioma, ganglioglioma, dysembryoplastic neuroepithelial tumor, multinodular and vacuolating neuronal tumor, and metastasis), epileptic (mesial temporal sclerosis and focal cortical dysplasia), neurodegenerative (Alzheimer's disease, progressive primary aphasia, and frontotemporal dementia), infectious (Herpes simplex virus and limbic encephalitis), vascular (ischemic stroke, arteriovenous malformation, and cerebral cavernous malformations), and toxic-metabolic (transient global amnesia and opioid-associated amnestic syndrome) etiologies.
Collapse
Affiliation(s)
- Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Colby
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Monika Bapna
- School of Medicine, Georgetown University, Washington, DC, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra P Rincon
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Li Y, Yuan C, Chen D, Xu S, Jiang W, Huang J, Ye S, Zhang Y, Liang J, Liu C. Comparison of Different Head Tilt Angles in Tomotherapy and Volumetric Modulated Arc Therapy for Hippocampal-Avoidance Whole-Brain Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241281326. [PMID: 39233627 PMCID: PMC11375751 DOI: 10.1177/15330338241281326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
PURPOSE Hippocampal-avoidance whole-brain radiotherapy (HA-WBRT) planning can present challenges. This study examines the influence of head tilt angles on the dosimetric characteristics of target and organs at risk (OARs), aiming to identify the optimal tilt angle that yields optimal dosimetric outcomes using tomotherapy (TOMO). METHODS Eight patients diagnosed with brain metastases underwent CT scans at five tilt angles: [0°, 10°), [10°, 20°), [20°, 30°), [30°, 40°), and [40°, 45°]. Treatment plans were generated using TOMO and volumetric modulated arc therapy (VMAT). Dosimetric parameters including conformity index (CI), homogeneity index (HI), D2cc, D98%, and Dmean of PTV, as well as Dmax, and Dmean of OARs were analyzed. Furthermore, a comparison was made between the dosimetric parameters of TOMO and VMAT plans. Finally, delivery efficiency of TOMO plans were assessed. RESULTS For the PTV, [40°, 45°] tilt angle demonstrated significantly better conformity, homogeneity, lower D2cc, and lower Dmean for the PTV. Regarding the OARs, the [40°, 45°] head tilt angle demonstrated significantly lower Dmax and Dmean in hippocampus, eyes, optic chiasm, and optic nerves. The [40°, 45°] tilt angle also showed significantly lower Dmax for brainstem and cochleas, as well as a lower Dmean for lens. In the [40°,45°] tilt angle for HA-WBRT, TOMO showed superior performance over VMAT for the PTV. TOMO achieved lower Dmax for brainstem, cochleas, optic nerves, and optic chiasm, as well as a lower Dmean for hippocampus. Furthermore, a significant correlation was found between delivery time and the PTV projection length in the sagittal plane. CONCLUSION The TOMO plan utilizing a tilt angle range of [40°, 45°] demonstrated superior PTV conformity and uniformity, along with enhanced OARs sparing. Furthermore, it exhibited a dosimetric advantage over VMAT for PTV and most OARs at the same angle range.
Collapse
Affiliation(s)
- Yang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Cuiyun Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Dongjie Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Sisi Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Jiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiaxin Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shanshan Ye
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yin Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jun Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenbin Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
7
|
Mengstu A, Chakko MN, Salisbury B, Fateh J. Posterior Reversible Encephalopathy Syndrome (PRES) and the Uncommon Sequela: Mesial Temporal Sclerosis. Cureus 2024; 16:e52380. [PMID: 38361717 PMCID: PMC10868631 DOI: 10.7759/cureus.52380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Posterior reversible encephalopathy syndrome is often linked to conditions like hypertension and is characterized by reversible brain edema. The development of mesial temporal sclerosis as a consequence of posterior reversible encephalopathy syndrome is an uncommon clinical outcome. We report a 48-year-old female who initially presented with severe iron deficiency anemia, hypertension, and septic tenosynovitis requiring surgical drainage with subsequent development of posterior reversible encephalopathy syndrome accompanied by endocarditis. Although there was a question of one seizure episode during one of her hospital days, the patient experienced multiple seizure episodes three months after she left the hospital. Subsequent MRI demonstrated atrophy of the left mesial temporal lobe suggesting mesial temporal sclerosis. The temporal development of mesial temporal sclerosis in a patient with posterior reversible encephalopathy syndrome highlights mesial temporal sclerosis as a potential long-term consequence of posterior reversible encephalopathy syndrome, and the need for imaging surveillance in patients diagnosed with posterior reversible encephalopathy syndrome.
Collapse
Affiliation(s)
- Abraham Mengstu
- Radiology, Ascension Providence Hospital / Michigan State University College of Human Medicine, Southfield, USA
| | - Mathew N Chakko
- Neuroradiology, Ascension Providence Hospital / Michigan State University College of Human Medicine, Southfield, USA
| | - Blake Salisbury
- Radiology, Ascension Providence Hospital / Michigan State University College of Human Medicine, Southfield, USA
| | - Jibran Fateh
- Radiology, Ascension Providence Hospital / Michigan State University College of Human Medicine, Southfield, USA
| |
Collapse
|