1
|
Dorosti T, Schultheiss M, Hofmann F, Thalhammer J, Kirchner L, Urban T, Pfeiffer F, Schaff F, Lasser T, Pfeiffer D. Optimizing convolutional neural networks for Chronic Obstructive Pulmonary Disease detection in clinical computed tomography imaging. Comput Biol Med 2025; 185:109533. [PMID: 39705795 DOI: 10.1016/j.compbiomed.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
We aim to optimize the binary detection of Chronic Obstructive Pulmonary Disease (COPD) based on emphysema presence in the lung with convolutional neural networks (CNN) by exploring manually adjusted versus automated window-setting optimization (WSO) on computed tomography (CT) images. 7194 contrast-enhanced CT images (3597 with COPD; 3597 healthy controls) from 78 subjects were selected retrospectively (01.2018-12.2021) and preprocessed. For each image, intensity values were manually clipped to the emphysema window setting and a baseline 'full-range' window setting. Class-balanced train, validation, and test sets contained 3392, 1114, and 2688 images. The network backbone was optimized by comparing various CNN architectures. Furthermore, automated WSO was implemented by adding a customized layer to the model. The image-level area under the Receiver Operating Characteristics curve (AUC) [lower, upper limit 95% confidence] was utilized to compare model variations. Repeated inference (n = 7) on the test set showed that the DenseNet was the most efficient backbone and achieved a mean AUC of 0.80 [0.76, 0.85] without WSO. Comparably, with input images manually adjusted to the emphysema window, the DenseNet model predicted COPD with a mean AUC of 0.86 [0.82, 0.89]. By adding a customized WSO layer to the DenseNet, an optimal window in the proximity of the emphysema window setting was learned automatically, and a mean AUC of 0.82 [0.78, 0.86] was achieved. Detection of COPD with DenseNet models was improved by WSO of CT data to the emphysema window setting range.
Collapse
Affiliation(s)
- Tina Dorosti
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany.
| | - Manuel Schultheiss
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany
| | - Felix Hofmann
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany
| | - Johannes Thalhammer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany; Institute for Advanced Study, Technical University of Munich, Garching, 85748, Bavaria, Germany
| | - Luisa Kirchner
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany
| | - Theresa Urban
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany; Institute for Advanced Study, Technical University of Munich, Garching, 85748, Bavaria, Germany
| | - Florian Schaff
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, 85748, Bavaria, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany
| | - Tobias Lasser
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Bavaria, Germany; Computational Imaging and Inverse Problems, Department of Computer Science, School of Computation, Information, and Technology, Technical University of Munich, Garching, 85748, Bavaria, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Bavaria, Germany; Institute for Advanced Study, Technical University of Munich, Garching, 85748, Bavaria, Germany
| |
Collapse
|
2
|
Chang M, Reicher JJ, Kalra A, Muelly M, Ahmad Y. Analysis of Validation Performance of a Machine Learning Classifier in Interstitial Lung Disease Cases Without Definite or Probable Usual Interstitial Pneumonia Pattern on CT Using Clinical and Pathology-Supported Diagnostic Labels. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:297-307. [PMID: 38343230 PMCID: PMC10976935 DOI: 10.1007/s10278-023-00914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 03/02/2024]
Abstract
We previously validated Fibresolve, a machine learning classifier system that non-invasively predicts idiopathic pulmonary fibrosis (IPF) diagnosis. The system incorporates an automated deep learning algorithm that analyzes chest computed tomography (CT) imaging to assess for features associated with idiopathic pulmonary fibrosis. Here, we assess performance in assessment of patterns beyond those that are characteristic features of usual interstitial pneumonia (UIP) pattern. The machine learning classifier was previously developed and validated using standard training, validation, and test sets, with clinical plus pathologically determined ground truth. The multi-site 295-patient validation dataset was used for focused subgroup analysis in this investigation to evaluate the classifier's performance range in cases with and without radiologic UIP and probable UIP designations. Radiologic assessment of specific features for UIP including the presence and distribution of reticulation, ground glass, bronchiectasis, and honeycombing was used for assignment of radiologic pattern. Output from the classifier was assessed within various UIP subgroups. The machine learning classifier was able to classify cases not meeting the criteria for UIP or probable UIP as IPF with estimated sensitivity of 56-65% and estimated specificity of 92-94%. Example cases demonstrated non-basilar-predominant as well as ground glass patterns that were indeterminate for UIP by subjective imaging criteria but for which the classifier system was able to correctly identify the case as IPF as confirmed by multidisciplinary discussion generally inclusive of histopathology. The machine learning classifier Fibresolve may be helpful in the diagnosis of IPF in cases without radiological UIP and probable UIP patterns.
Collapse
Affiliation(s)
- Marcello Chang
- Stanford School of Medicine, 291 Campus Drive, Stanford, CA, USA
| | | | | | | | - Yousef Ahmad
- Department of Pulmonary and Critical Care, University of Cincinnati Medical Center, Cincinnati, USA
| |
Collapse
|