1
|
Malinowski KS, Wierzba TH, Neary JP, Winklewski PJ, Wszędybył-Winklewska M. Resting Heart Rate Affects Heart Response to Cold-Water Face Immersion Associated with Apnea. BIOLOGY 2023; 12:869. [PMID: 37372152 DOI: 10.3390/biology12060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The regular cardiac response to immersion of the face in cold water is reduction in heart rate (HR). The highly individualized and unpredictable course of the cardiodepressive response prompted us to investigate the relationship between the cardiac response to face immersion and the resting HR. The research was conducted with 65 healthy volunteers (37 women and 28 men) with an average age of 21.13 years (20-27 years) and a BMI of 21.49 kg/m2 (16.60-28.98). The face-immersion test consisted of stopping breathing after maximum inhaling and voluntarily immersing the face in cold water (8-10 °C) for as long as possible. Measurements included determination of minimum, average, and maximum HR at rest and minimum and maximum HR during the cold-water face-immersion test. The results indicate a strong relationship between the cardiodepressive reaction of the immersion of the face and the minimum HR before the test, as well as a relationship between the maximum HR during the test and the maximum HR at rest. The results also indicate a strong influence of neurogenic HR regulation on the described relationships. The parameters of the basal HR can, therefore, be used as prognostic indicators of the course of the cardiac response of the immersion test.
Collapse
Affiliation(s)
- Krzysztof S Malinowski
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Tomasz H Wierzba
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - J Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Paweł J Winklewski
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Wszędybył-Winklewska
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
- Institute of Health Sciences, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
| |
Collapse
|
2
|
Malinowski KS, Wierzba TH, Neary JP, Winklewski PJ, Wszędybył-Winklewska M. Heart Rate Variability at Rest Predicts Heart Response to Simulated Diving. BIOLOGY 2023; 12:biology12010125. [PMID: 36671817 PMCID: PMC9856132 DOI: 10.3390/biology12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
A characteristic feature of the cardiac response to diving is the uncertainty in predicting individual course. The aim of the study was to determine whether resting regulatory heart rate determinants assessed before diving may be predictors of cardiac response in a simulated diving test. The research was conducted with 65 healthy volunteers (37 women and 28 men) with an average age of 21.13 years (20-27 years) and a BMI of 21.49 kg/m2 (16.60-28.98). The simulated diving test consisted of stopping breathing after maximum inhaling and voluntarily immersing the face in water (8-10 °C) for as long as possible. The measurements included heart rate variability (HRV) analysis before diving and determination of the course of the cardiac response to diving-minimum and maximum heart rate (HR). The results indicate that minimum HR during diving (MIN_div) is dependent on the short-term HRV measures, which proves the strong influence of the parasympathetic system on the MIN_div. The lack of dependence of MIN_div on short-term HRV in women may be associated with differences in neurogenic HR regulation in women and men. In conclusion, cardiac response to simulated diving is strictly dependent on the autonomic regulation of the heart rhythm under resting conditions. The course of the cardiac response to diving and its relationship with resting HRV appears to be gender dependent.
Collapse
Affiliation(s)
- Krzysztof S. Malinowski
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-15-20
| | - Tomasz H. Wierzba
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Paweł J. Winklewski
- Department of Human Physiology, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
- Institute of Health Sciences, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
| | | |
Collapse
|
3
|
Nordine M, Schwarz A, Bruckstein R, Gunga HC, Opatz O. The Human Dive Reflex During Consecutive Apnoeas in Dry and Immersive Environments: Magnitude and Synchronicity. Front Physiol 2022; 12:725361. [PMID: 35058791 PMCID: PMC8764278 DOI: 10.3389/fphys.2021.725361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human dive reflex (HDR), an O2 conserving reflex, is characterised by an interplay of central parasympathetic and peripheral sympathetic reactions, which are presumed to operate independently of each other. The HDR is fully activated during apnoea with facial immersion in water and complete immersion in water is thought to increase the magnitude of HDR during consecutive apnoeas. A comparison of HDR activity between consecutive apnoeas in full-body immersion with consecutive apnoeas in dry conditions has not been fully explored. Also, the interplay between parasympathetic and sympathetic reactions involved in the HDR has not been thoroughly analysed. Methods: 11 human volunteers performed 3 consecutive 60 s apnoeas with facial immersion in dry conditions (FIDC) and 3 consecutive apnoeas with facial immersion in full immersion (FIFI). Heart rate (HR), R-R interval (RRI), finger pulse amplitude (FPA), splenic width (SW) and SpO2 were all measured before, during and after apnoeas. A one-way ANOVA using Dunn's post hoc test was performed to assess HDR activity, and a Pearson's correlation test was performed to assess HDR synchronisation between physiological parameters during both conditions. Results: Although HDR activity was not significantly different between both conditions, HR and RRI showed progressively greater changes during FIFI compared with FIDC, while SW and FPA changes were relatively equivalent. During FIDC, significant correlations were found between SW & SpO2 and FPA & SpO2. During FIFI, significant correlations were found between RRI & FPA, SW & FPA, HR & SpO2 and FPA & SpO2. Discussion: While there was no significant difference found between HDR activity during FIDC and FIFI, consecutive apnoeas during FIFI triggered a greater magnitude of cardiac activity. Furthermore, significant correlations between RRI and SW with FPA indicate a crosstalk between parasympathetic tone with splenic contraction and increased peripheral sympathetic outflow during FIFI compared to FIDC. In conclusion, HDR activity during consecutive apnoeas does not differ between FIDC and FIFI. There appears to be however a greater level of synchronicity during apnoeas in FIFI compared to FIDC and that this is most likely due to the physiological effects of immersion, which could induce neural recruitment and increased cross talk of HDR pathways.
Collapse
Affiliation(s)
- Michael Nordine
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Anton Schwarz
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Renana Bruckstein
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| | - Oliver Opatz
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinic for Anesthesiology, Campus Benjamin Franklin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Kyriakoulis P, Kyrios M, Nardi AE, Freire RC, Schier M. The Implications of the Diving Response in Reducing Panic Symptoms. Front Psychiatry 2021; 12:784884. [PMID: 34912254 PMCID: PMC8667218 DOI: 10.3389/fpsyt.2021.784884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Increased CO2 sensitivity is common in panic disorder (PD) patients. Free divers who are known for their exceptional breathing control have lower CO2 sensitivity due to training effects. This study aimed to investigate the immediate effects of cold facial immersion (CFI), breath holding and CO2 challenges on panic symptoms. Healthy participants and patients with PD were subjected to four experimental conditions in a randomly assigned order. The four conditions were (a) breath-holding (BH), (b) CFI for 30 s, (c) CO2 challenge, and (d) CO2 challenge followed by CFI. Participants completed a battery of psychological measures, and physiological data (heart rate and respiration rate) were collected following each experimental condition. Participants with PD were unable to hold their breath for as long as normal controls; however, this finding was not significant, potentially due to a small sample size. Significant reductions in both physiological and cognitive symptoms of panic were noted in the clinical group following the CFI task. As hypothesized, the CFI task exerted demonstrable anxiolytic effects in the clinical group in this study by reducing heart rate significantly and lessening self-reported symptoms of anxiety and panic. This outcome demonstrates the promise of the CFI task for clinical applications.
Collapse
Affiliation(s)
- Peter Kyriakoulis
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Michael Kyrios
- College of Education, Psychology & Social Work, Orama Institute for Mental Health & Wellbeing, Flinders University, Adelaide, SA, Australia
| | - Antonio Egidio Nardi
- Institute of Psychiatry-Federal University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Rafael C Freire
- Institute of Psychiatry-Federal University of Rio De Janeiro, Rio De Janeiro, Brazil.,Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Mark Schier
- School of Health, Swinburne University, Hawthorn, VIC, Australia
| |
Collapse
|
5
|
Macartney MJ, McLennan PL, Peoples GE. Heart rate variability during cardiovascular reflex testing: the importance of underlying heart rate. J Basic Clin Physiol Pharmacol 2020; 32:145-153. [PMID: 33141106 DOI: 10.1515/jbcpp-2020-0245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Heart rate variability (HRV) is often measured during clinical and experimental cardiovascular reflex tests (CRT), as a reflection of cardiac autonomic modulation, despite limited characterization of the rapid responses that occur. Therefore, we evaluated the responsiveness of HRV indices in 20 healthy young adults (age, 27 ± 6 y; mass, 76.9 ± 16.8 kg; height, 1.79 ± 0.12 m) during four separate established CRT. METHODS These included the [I] orthostatic challenge, [II] isometric handgrip, [III] cold pressor and [IV] cold diving reflex tests. Electrocardiogram was recorded throughout, with HRV derived from RR intervals at rest and from each CRT. On a separate day, a subgroup of participants (n=9) completed the same protocol for a second time. RESULTS The maximal slope of heart rate change (dTdt) was significantly different between all CRT, with the orthostatic challenge producing the fastest increase (2.56 ± 0.48) and the cold pressor the fastest reduction (-1.93 ± 0.68) in heart rate. Overall HRV, reflected by Poincaré plot ratio (SD1:SD2), was significantly reduced during all CRT ([I], -0.41 ± 0.12; [II], -0.19 ± 0.05; [III], -0.36 ± 0.12; [IV], -0.44 ± 0.11; p<0.05) relative to baseline and this was reproducible in time-series. However, when HRV indices were correlated to mean-RR an exponential growth-like relationship was evident (R2 ranging from: 0.52-0.62). CONCLUSIONS These unique outcomes demonstrate that short-term alterations in HRV are evident during CRT, while indicating the importance of adjusting for, or at least reporting, underlying heart rate when interpreting such measures.
Collapse
Affiliation(s)
- Michael J Macartney
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Peter L McLennan
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
6
|
Costalat G, Godin B, Balmain BN, Moreau C, Brotherton E, Billaut F, Lemaitre F. Autonomic regulation of the heart and arrhythmogenesis in trained breath-hold divers. Eur J Sport Sci 2020; 21:439-449. [PMID: 32223533 DOI: 10.1080/17461391.2020.1749313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractBreath-hold divers are known to develop cardiac autonomic changes and brady-arrthymias during prolonged breath-holding (BH). The effects of BH-induced hypoxemia were investigated upon both cardiac autonomic status and arrhythmogenesis by comparing breath-hold divers (BHDs) to non-divers (NDs). Eighteen participants (9 BHDs, 9 NDs) performed a maximal voluntary BH with face immersion. BHDs were asked to perform an additional BH at water surface to increase the degree of hypoxemia. Beat-to-beat changes in heart rate (HR), short-term fractal scaling exponent (DFAα1), the number of arrhythmic events [premature ventricular contractions (PVCs), premature atrial contractions (PACs)] and peripheral oxygen saturation (SpO2) were recorded during and immediately following BH. The corrected QT-intervals (QTc) were analyzed pre- and post-acute BH. A regression-based model was used to split BH into a normoxic (NX) and a hypoxemic phase (HX). During the HX phase of BH, BHDs showed a progressive decrease in DFAα1 during BH with face immersion (p < 0.01) and BH with whole-body immersion (p < 0.01) whereas NDs did not (p > 0.05). In addition, BHDs had more arrhythmic events during the HX of BH with whole-body immersion when compared to the corresponding NX phase (5.9 ± 6.7 vs 0.4 ± 1.3; p < 0.05; respectively). The number of PVCs was negatively correlated with SpO2 during BH with whole-body immersion (r = -0.72; p < 0.05). The hypoxemic stage of voluntary BH is concomitant with significant cardiac autonomic changes toward a synergistic sympathetic and parasympathetic stimulation. Co-activation led ultimately to increased bradycardic response and cardiac electrophysiological disturbances.
Collapse
Affiliation(s)
- Guillaume Costalat
- Faculty of Sport Sciences, APERE laboratory, EA 3300, University of Picardie Jules Verne, France
| | | | - Bryce N Balmain
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Clara Moreau
- CHU Sainte Justine - Brain and Child Development, University of Montreal, Canada
| | - Emily Brotherton
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Francois Billaut
- Département de kinésiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Frederic Lemaitre
- Faculty of Sport Sciences, CETAPS laboratory, EA 3832, Normandy University, France
| |
Collapse
|
7
|
Gumabay EMS, Ramirez RC, Dimaya JMM, Beltran MM. Adversity of prolonged extreme cold exposure among adult clients diagnosed with coronary artery diseases: a primer for recommending community health nursing intervention. Nurs Open 2018; 5:62-69. [PMID: 29344396 PMCID: PMC5762701 DOI: 10.1002/nop2.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023] Open
Abstract
Aim This research study explored the lived experiences of adults diagnosed with Coronary Artery Disease (CAD) when exposed to a prolonged period of extreme cold. Design This research study utilized descriptive qualitative research design. Methods Face-to-face interview sessions with audio recording were conducted. There were 30 informants who participated in the study. Descriptive phenomenology with Colaizzi's method of data analysis was used. Results Results revealed three themes, namely: (i) elucidating cold exposure; (ii) challenges of cold exposure; and (iii) translating adverse exposure to self-management. The results further revealed the significance of nursing health care especially to health promotion, disease prevention and health restoration especially in community setting. Conclusion In conclusion, manifestations of CAD are triggered when exposed to a prolonged period of extremely low environmental temperature.
Collapse
Affiliation(s)
- Eladio Martin S. Gumabay
- Center for Health Research and DevelopmentUniversity of Saint LouisTuguegarao CityCagayan ValleyPhilippines
| | | | | | - Mae M. Beltran
- University of Saint LouisTuguegarao CityCagayan ValleyPhilippines
| |
Collapse
|
8
|
Bierens JJLM, Lunetta P, Tipton M, Warner DS. Physiology Of Drowning: A Review. Physiology (Bethesda) 2017; 31:147-66. [PMID: 26889019 DOI: 10.1152/physiol.00002.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drowning physiology relates to two different events: immersion (upper airway above water) and submersion (upper airway under water). Immersion involves integrated cardiorespiratory responses to skin and deep body temperature, including cold shock, physical incapacitation, and hypovolemia, as precursors of collapse and submersion. The physiology of submersion includes fear of drowning, diving response, autonomic conflict, upper airway reflexes, water aspiration and swallowing, emesis, and electrolyte disorders. Submersion outcome is determined by cardiac, pulmonary, and neurological injury. Knowledge of drowning physiology is scarce. Better understanding may identify methods to improve survival, particularly related to hot-water immersion, cold shock, cold-induced physical incapacitation, and fear of drowning.
Collapse
Affiliation(s)
| | - Philippe Lunetta
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Mike Tipton
- Department of Sport and Exercise Science, Extreme Environments Laboratory, University of Portsmouth, Portsmouth, United Kingdom; and
| | - David S Warner
- Departments of Anesthesiology, Neurobiology and Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|