1
|
Michael AH, Hana TA, Mousa VG, Ormerod KG. Muscle-fiber specific genetic manipulation of Drosophila sallimus severely impacts neuromuscular development, morphology, and physiology. Front Physiol 2024; 15:1429317. [PMID: 39351283 PMCID: PMC11439786 DOI: 10.3389/fphys.2024.1429317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The ability of skeletal muscles to contract is derived from the unique genes and proteins expressed within muscles, most notably myofilaments and elastic proteins. Here we investigated the role of the sallimus (sls) gene, which encodes a structural homologue of titin, in regulating development, structure, and function of Drosophila melanogaster. Knockdown of sls using RNA interference (RNAi) in all body-wall muscle fibers resulted in embryonic lethality. A screen for muscle-specific drivers revealed a Gal4 line that expresses in a single larval body wall muscle in each abdominal hemisegment. Disrupting sls expression in single muscle fibers did not impact egg or larval viability nor gross larval morphology but did significantly alter the morphology of individual muscle fibers. Ultrastructural analysis of individual muscles revealed significant changes in organization. Surprisingly, muscle-cell specific disruption of sls also severely impacted neuromuscular junction (NMJ) formation. The extent of motor-neuron (MN) innervation along disrupted muscles was significantly reduced along with the number of glutamatergic boutons, in MN-Is and MN-Ib. Electrophysiological recordings revealed a 40% reduction in excitatory junctional potentials correlating with the extent of motor neuron loss. Analysis of active zone (AZ) composition revealed changes in presynaptic scaffolding protein (brp) abundance, but no changes in postsynaptic glutamate receptors. Ultrastructural changes in muscle and NMJ development at these single muscle fibers were sufficient to lead to observable changes in neuromuscular transduction and ultimately, locomotory behavior. Collectively, the data demonstrate that sls mediates critical aspects of muscle and NMJ development and function, illuminating greater roles for sls/titin.
Collapse
Affiliation(s)
| | | | | | - Kiel G. Ormerod
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
2
|
Parmentier E, Thiry M. A new organisational design in skeletal muscle fibres. Cell Tissue Res 2023:10.1007/s00441-023-03775-5. [PMID: 37129618 DOI: 10.1007/s00441-023-03775-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
In vertebrate skeletal muscles, the architecture of myofibrils is particularly well conserved throughout the taxa. It is composed of suites of repeating functional units called sarcomeres which give the muscle its striated structure. Here, we show that the skeletal sound producing muscles of the cusk eel Parophidion vassali have a different organisation, distinct from the classical type found in textbooks. Within sarcomeres, filaments are not straight lines but have a Y-shaped structure. This looks like chicken wire, with one branch connecting to a branch from the myofibril above and the other connecting to a branch from the myofibril below. This organisation seems to be an adaptation to counteract a trade-off between the speed and force. The low ratio of myofibrils within cell muscles and the high volume of sarcoplasmic reticulum strongly suggest that these muscles are capable of fast contractions. In parallel, the Z-bands are quite wide about 30% of the sarcomere length. This extraordinary long Z-band could smooth out the tension variations found in high-speed muscle contraction, helping to produce sounds with low variabilities in the sound features. Simultaneously, the Y-shaped structure allows having more cross-bridges, increasing the force in this high-speed muscle.
Collapse
Affiliation(s)
- Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology, FOCUS, Institut de Chimie - B6C, University of Liège, Sart Tilman, 4000, Liege, Belgium.
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000, Liege, Belgium
| |
Collapse
|
3
|
Zuccaro E, Marchioretti C, Pirazzini M, Pennuto M. Introduction to the Special Issue "Skeletal Muscle Atrophy: Mechanisms at a Cellular Level". Cells 2023; 12:cells12030502. [PMID: 36766844 PMCID: PMC9914442 DOI: 10.3390/cells12030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the most abundant tissue in the body and requires high levels of energy to function properly. Skeletal muscle allows voluntary movement and body posture, which require different types of fiber, innervation, energy, and metabolism. Here, we summarize the contribution received at the time of publication of this Introductory Issue for the Special Issue dedicated to "Skeletal Muscle Atrophy: Mechanisms at a Cellular Level". The Special Issue is divided into three sections. The first is dedicated to skeletal muscle pathophysiology, the second to disease mechanisms, and the third to therapeutic development.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Cir-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131 Padova, Italy
- Correspondence: (M.P.); (M.P.)
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
- Correspondence: (M.P.); (M.P.)
| |
Collapse
|
4
|
Morris TA, Eldeen S, Tran RDH, Grosberg A. A comprehensive review of computational and image analysis techniques for quantitative evaluation of striated muscle tissue architecture. BIOPHYSICS REVIEWS 2022; 3:041302. [PMID: 36407035 PMCID: PMC9667907 DOI: 10.1063/5.0057434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization. Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute to a robust understanding of the development and mechanics of striated muscles.
Collapse
Affiliation(s)
| | - Sarah Eldeen
- Center for Complex Biological Systems, University of California, Irvine, California 92697-2700, USA
| | | | | |
Collapse
|
5
|
Lang C, Lloyd EC, Matuszewski KE, Xu Y, Ganesan V, Huang R, Kumar M, Hickey RJ. Nanostructured block copolymer muscles. NATURE NANOTECHNOLOGY 2022; 17:752-758. [PMID: 35654867 DOI: 10.1038/s41565-022-01133-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
High-performance actuating materials are necessary for advances in robotics, prosthetics and smart clothing. Here we report a class of fibre actuators that combine solution-phase block copolymer self-assembly and strain-programmed crystallization. The actuators consist of highly aligned nanoscale structures with alternating crystalline and amorphous domains, resembling the ordered and striated pattern of mammalian skeletal muscle. The reported nanostructured block copolymer muscles excel in several aspects compared with current actuators, including efficiency (75.5%), actuation strain (80%) and mechanical properties (for example, strain-at-break of up to 900% and toughness of up to 121.2 MJ m-3). The fibres exhibit on/off rotary actuation with a peak rotational speed of 450 r.p.m. Furthermore, the reported fibres demonstrate multi-trigger actuation (heat and hydration), offering switchable mechanical properties and various operating modes. The versatility and recyclability of the polymer fibres, combined with the facile fabrication method, opens new avenues for creating multifunctional and recyclable actuators using block copolymers.
Collapse
Affiliation(s)
- Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Elisabeth C Lloyd
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kelly E Matuszewski
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yifan Xu
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rui Huang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert J Hickey
- Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Martin TG, Myers VD, Dubey P, Dubey S, Perez E, Moravec CS, Willis MS, Feldman AM, Kirk JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021; 12:2942. [PMID: 34011988 PMCID: PMC8134551 DOI: 10.1038/s41467-021-23272-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance. Decreased expression of BAG3 in the heart is associated with contractile dysfunction and heart failure. Here the authors show that this is due to decreased BAG3-dependent sarcomere protein turnover, which impairs mechanical function, and that sarcomere force-generating capacity is restored with BAG3 gene therapy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Valerie D Myers
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Praveen Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shubham Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Christine S Moravec
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arthur M Feldman
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
8
|
An insight on Drosophila myogenesis and its assessment techniques. Mol Biol Rep 2020; 47:9849-9863. [PMID: 33263930 DOI: 10.1007/s11033-020-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Movement assisted by muscles forms the basis of various behavioural traits seen in Drosophila. Myogenesis involves developmental processes like cellular specification, differentiation, migration, fusion, adherence to tendons and neuronal innervation in a series of coordinated event well defined in body space and time. Gene regulatory networks are switched on-off, fine tuning at the right developmental stage to assist each cellular event. Drosophila is a holometabolous organism that undergoes myogenesis waves at two developmental stages, and is ideal for comparative analysis of the role of genes and genetic pathways conserved across phyla. In this review we have summarized myogenic events from the embryo to adult focussing on the somatic muscle development during the early embryonic stage and then on indirect flight muscles (IFM) formation required for adult life, emphasizing on recent trends of analysing muscle mutants and advances in Drosophila muscle biology.
Collapse
|
9
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
10
|
Lacham-Kaplan O, Camera DM, Hawley JA. Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. Int J Mol Sci 2020; 21:E745. [PMID: 31979341 PMCID: PMC7037418 DOI: 10.3390/ijms21030745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50μM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| | - Donny M. Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne 3122, Australia;
| | - John A. Hawley
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| |
Collapse
|