1
|
Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:197-264. [PMID: 32138900 DOI: 10.1016/bs.ircmb.2019.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sarco/endoplasmic reticulum is an extensive, dynamic and heterogeneous membranous network that fulfills multiple homeostatic functions. Among them, it compartmentalizes, stores and releases calcium within the intracellular space. In the case of muscle cells, calcium released from the sarco/endoplasmic reticulum in the vicinity of the contractile machinery induces cell contraction. Furthermore, sarco/endoplasmic reticulum-derived calcium also regulates gene transcription in the nucleus, energy metabolism in mitochondria and cytosolic signaling pathways. These diverse and overlapping processes require a highly complex fine-tuning that the sarco/endoplasmic reticulum provides by means of its numerous tubules and cisternae, specialized domains and contacts with other organelles. The sarco/endoplasmic reticulum also possesses a rich calcium-handling machinery, functionally coupled to both contraction-inducing stimuli and the contractile apparatus. Such is the importance of the sarco/endoplasmic reticulum for muscle cell physiology, that alterations in its structure, function or its calcium-handling machinery are intimately associated with the development of cardiometabolic diseases. Cardiac hypertrophy, insulin resistance and arterial hypertension are age-related pathologies with a common mechanism at the muscle cell level: the accumulation of damaged proteins at the sarco/endoplasmic reticulum induces a stress response condition termed endoplasmic reticulum stress, which impairs proper organelle function, ultimately leading to pathogenesis.
Collapse
|
2
|
CaMKII is essential for the function of the enteric nervous system. PLoS One 2012; 7:e44426. [PMID: 22952977 PMCID: PMC3432132 DOI: 10.1371/journal.pone.0044426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species. Methodology/Principal Findings CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue. Conclusion ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.
Collapse
|
3
|
He C, Wang C, Zhou Y, Li J, Zuo Z. Embryonic exposure to benzo(a)pyrene influences neural development and function in rockfish (Sebastiscus marmoratus). Neurotoxicology 2012; 33:758-62. [DOI: 10.1016/j.neuro.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/20/2011] [Accepted: 01/06/2012] [Indexed: 12/27/2022]
|
4
|
Regulation of Ca²⁺/calmodulin-dependent protein kinase II signaling within hippocampal glutamatergic postsynapses during flurazepam withdrawal. Neural Plast 2012; 2012:405926. [PMID: 22830051 PMCID: PMC3399473 DOI: 10.1155/2012/405926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Cessation of one-week oral administration of the benzodiazepine flurazepam (FZP) to rats results in withdrawal anxiety after 1 day of withdrawal. FZP withdrawal is correlated with synaptic incorporation of homomeric GluA1-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) in the proximal stratum radiatum of CA1 neurons. After 2 days of withdrawal, Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates GluA1 subunits at Ser831, increasing channel conductance. Secondary to AMPAR potentiation, GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), known binding partners of CaMKII, are selectively removed from the postsynaptic density (PSD). While activation of synaptic CaMKII is known to involve translocation to the PSD, CaMKII bound to NMDARs may be removed from the PSD. To distinguish these possibilities, the current studies used postembedding immunogold electron microscopy to investigate alterations in CaMKII signaling at CA1 stratum radiatum synapses after 2 days of FZP withdrawal. These studies revealed decreased total, but not autophosphorylated (Thr286) CaMKIIα expression in CA1 PSDs. The removal of CaMKII-GluN2B complexes from the PSD during drug withdrawal may serve as a homeostatic mechanism to limit AMPAR-mediated CA1 neuron hyperexcitability and benzodiazepine withdrawal anxiety.
Collapse
|
5
|
Yao CH, Zhang P, Zhang L. Differential protein and mRNA expression of CaMKs during osteoclastogenesis and its functional implications. Biochem Cell Biol 2012; 90:532-9. [PMID: 22428553 DOI: 10.1139/o2012-002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The calmodulin-dependent kinase (CaMK) family has been recently recognized to participate in the regulation of osteoclastogenesis. However, there are some controversial reports regarding the mRNA expression patterns of CaMKs during osteoclastogenesis, although the protein expression pattern of most CaMKs during osteoclastogenesis have not been studied. In the present study, we attempted to address this issue by using a mouse bone marrow monocyte model and parallel Western blotting and quantitative real-time PCR. Our results revealed some interesting expression patterns of CaMKs during the process. Among all CaMKs examined, only CaMKIIδ exhibited consistent expression patterns between its mRNA and protein with both rising remarkably during osteoclastogenesis. CaMKIV protein was not detectable during the first three days of cell culture, but it rose on Day 5. The CaMK inhibitor, KN93, subdued osteoclastogenesis during the first three days of cell culture, a time when CaMKIV was absent while other KN93-sensitive CaMKs presented. In addition, KN93 was found to inhibit the expression of some early receptor activator of NF-κB (RANK) signaling intermediates (extracellular signal-regulated kinase (ERK) and Akt) in the non-differentiated mouse bone marrow monocytes. Collectively, these data reveal differential expression patterns of KN93-sensitive CaMK proteins and their mRNAs during osteoclastogenesis, supporting a CaMKII-RANK signaling interaction in the regulation of early osteoclastogenesis.
Collapse
Affiliation(s)
- Chao Hua Yao
- Palmer Laboratory of Cell & Molecular Biology, 4705 S. Clyde Morris Blvd, Port Orange, FL 32129, USA
| | | | | |
Collapse
|
6
|
Bhetwal BP, An CL, Fisher SA, Perrino BA. Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles. Neurogastroenterol Motil 2011; 23:e425-36. [PMID: 21883701 PMCID: PMC3173524 DOI: 10.1111/j.1365-2982.2011.01769.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) govern myosin light chain (LC20) phosphorylation and smooth muscle contraction. Rho kinase (ROK) inhibits MLCP, resulting in greater LC20 phosphorylation and force generation at a given [Ca(2+) ](i) . Here, we investigate the role of ROK in regulating LC20 phosphorylation and spontaneous contractions of gastric fundus, gastric antrum, and proximal colon smooth muscles. METHODS Protein and phosphorylation levels were determined by western blotting. The effects of Y27632, nicardipine, and GF109203X on phosphorylation levels and contraction were measured. KEY RESULTS γ-Actin expression is similar in all three smooth muscles. LC20 and pS19 are highest, but ROK1 and ROK2 are lowest, in antrum and proximal colon smooth muscles. LZ +/- myosin phosphatase targeting subunit 1 (MYPT1), CPI-17, and pT696, pT853, and pT38 are highest in fundus and proximal colon smooth muscles. Myosin phosphatase-rho interacting protein (M-RIP) expression is lowest in fundus, and highest in antrum and proximal colon smooth muscles. Y27632 reduced pT853 in each smooth muscle, but reduced pT696 only in fundus smooth muscles. Nicardipine had no effect on pT38 in each smooth muscle, while GF109203X reduced pT38 in proximal colon and fundus smooth muscles. Y27632 or nicardipine reduced pS19 in proximal colon and fundus smooth muscles. Y27632 or nicardipine inhibited antrum and proximal colon smooth muscle spontaneous contractions, but only Y27632 reduced fundus smooth muscle tone. Zero external Ca(2+) relaxed each smooth muscle and abolished LC20 phosphorylation. CONCLUSIONS & INFERENCES Organ-specific mechanisms involving the MLCP interacting proteins LZ +/- MYPT1, M-RIP, and CPI-17 are critical to regulating basal LC20 phosphorylation in gastrointestinal smooth muscles.
Collapse
Affiliation(s)
- Bhupal P. Bhetwal
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Chang Long An
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| | - Steven A. Fisher
- Departments of Medicine (Cardiology), and Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian A. Perrino
- Department of Physiology & Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
7
|
Perrino BA. Regulation of gastrointestinal motility by Ca2+/calmodulin-stimulated protein kinase II. Arch Biochem Biophys 2011; 510:174-81. [PMID: 21443856 PMCID: PMC3134147 DOI: 10.1016/j.abb.2011.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 12/30/2022]
Abstract
Gastrointestinal (GI) motility ultimately depends upon the contractile activity of the smooth muscle cells of the tunica muscularis. Integrated functioning of multiple tissues and cell types, including enteric neurons and interstitial cells of Cajal (ICC) is necessary to generate coordinated patterns of motor activity that control the movement of material through the digestive tract. The neurogenic mechanisms that govern GI motility patterns are superimposed upon intrinsic myogenic mechanisms regulating smooth muscle cell excitability. Several mechanisms regulate smooth muscle cell responses to neurogenic inputs, including the multifunctional Ca(2+)/calmodulin-stimulated protein kinase II (CaMKII). CaMKII can be activated by Ca(2+) transients from both extracellular and intracellular sources. Prolonging the activities of Ca(2+)-sensitive K(+) channels in the plasma membrane of GI smooth muscle cells is an important regulatory mechanism carried out by CaMKII. Phospholamban (PLN) phosphorylation by CaMKII activates the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), increasing both the rate of Ca(2+) clearance from the myoplasm and the frequency of localized Ca(2+) release events from intracellular stores. Overall, CaMKII appears to moderate GI smooth muscle cell excitability. Finally, transcription factor activities may be facilitated by the neutralization of HDAC4 by CaMKII phosphorylation, which may contribute to the phenotypic plasticity of GI smooth muscle cells.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, 89557, USA.
| |
Collapse
|
8
|
Bissonnette SL, Haas A, Mann KK, Schlezinger JJ. The role of CaMKII in calcium-activated death pathways in bone marrow B cells. Toxicol Sci 2010; 118:108-18. [PMID: 20810541 DOI: 10.1093/toxsci/kfq256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcium is an essential signaling molecule in developing B cells, thus altering calcium dynamics represents a potential target for toxicant effects. GW7845, a tyrosine analog and potent peroxisome proliferator-activated receptor γ agonist, induces rapid mitogen-activated protein kinase (MAPK)-dependent apoptosis in bone marrow B cells. Changes in calcium dynamics are capable of mediating rapid initiation of cell death; therefore, we investigated the contribution of calcium to GW7845-induced apoptosis. Treatment of a nontransformed murine pro/pre-B cell line (BU-11) with GW7845 (40 μM) resulted in intracellular calcium release. Multiple features of GW7845-induced cell death were suppressed by the calcium chelator BAPTA, including MAPK activation, loss of mitochondrial membrane potential, cytochrome c release, caspase-3 activation, and DNA fragmentation. A likely mechanism for the calcium-mediated effects is activation of CaMKII, a calcium-dependent MAP4K. We observed that three CaMKII isoforms (β, γ, and δ) are expressed in lymphoid tissues and bone marrow B cells. Treatment with GW7845 increased CaMKII activity. All features of GW7845-induced cell death, except loss of mitochondrial membrane potential, were suppressed by CaMKII inhibitors (KN93 and AIP-II), suggesting the activation of multiple calcium-driven pathways. To determine if CaMKII activation is a common feature of early B cell death following perturbation of Ca(2+) flux, we dissected tributyltin (TBT)-induced death signaling. High-dose TBT (1 μM) is known to activate calcium-dependent death. TBT induced rapid apoptosis that was associated with intracellular calcium release, CaMKII activation and MAPK activation, and was inhibited by AIP-II. Thus, we show that early B cells are susceptible to calcium-triggered cell death through a CaMKII/MAPK-dependent pathway.
Collapse
Affiliation(s)
- Stephanie L Bissonnette
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
9
|
Qureshi S, Song J, Lee HT, Koh SD, Hennig GW, Perrino BA. CaM kinase II in colonic smooth muscle contributes to dysmotility in murine DSS-colitis. Neurogastroenterol Motil 2010; 22:186-95, e64. [PMID: 19735476 PMCID: PMC2806503 DOI: 10.1111/j.1365-2982.2009.01406.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Altered calcium mobilization has been implicated in the development of colonic dysmotility in inflammatory bowel disease. The aim of this study was to investigate the mechanisms by which disrupted intracellular Ca(2+) signalling contributes to the impaired contractility of colon circular smooth muscles. METHODS Acute colitis was induced in C57Bl/6 mice with dextran sulphate sodium (DSS) in the drinking water for 5 days. KEY RESULTS Spontaneous and acetylcholine-evoked contractions, caffeine-evoked hyperpolarization, and SERCA2 and phospholamban expression were reduced compared with controls. Tetrodotoxin did not restore control levels of contractile activity. The amplitudes, but not the frequency, of intracellular Ca(2+) waves were increased compared with controls. Caffeine abolished intracellular Ca(2+) waves in control smooth muscle cells, but not in smooth muscle cells from DSS-treated mice. CaM kinase II activity and cytosolic levels of HDAC4 were increased, and I kappaB alpha levels were decreased in distal colon smooth muscles from DSS-treated mice. CONCLUSIONS & INFERENCES These results suggest that disruptions in intracellular Ca(2+) mobilization due to down-regulation of SERCA2 and phospholamban expression lead to increased CaM kinase II activity and cytosolic HDAC4 that may contribute to the dysmotility of colonic smooth muscles in colitis by enhancing NF-kappaB activity.
Collapse
Affiliation(s)
- Sadeea Qureshi
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | - Sang Don Koh
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Grant W. Hennig
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
10
|
Bae JY, Ahn SJ, Han W, Noh DY. Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines. J Cell Biochem 2007; 101:1038-45. [PMID: 17163455 DOI: 10.1002/jcb.21155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptosis is known to be induced by direct oxidative damage due to oxygen-free radicals or hydrogen peroxide or by their generation in cells by the actions of injurious agents. Together with glutathione peroxidase and catalase, peroxiredoxin (Prx) enzymes play an important role in eliminating peroxides generated during metabolism. We investigated the role of Prx enzymes during cellular response to oxidative stress. Using Prx isoforms-specific antibodies, we investigated the presence of Prx isoforms by immunoblot analysis in cell lysates of the MCF-7 breast cancer cell line. Treatment of MCF-7 with hydrogen peroxide (H2O2) resulted in the dose-dependent expressions of Prx I and II at the protein and mRNA levels. To investigate the physiologic relevance of the Prx I and II expressions induced by H2O2, we compared the survivals of MCF10A normal breast cell line and MCF-7 breast cancer cell line following exposure to H2O2. The treatment of MCF10A with H2O2 resulted in rapid cell death, whereas MCF-7 was resistant to H2O2. In addition, we found that Prx I and II transfection enabled MCF10A cells to resist H2O2-induced cell death. These findings suggest that Prx I and II have important functions as inhibitors of cell death during cellular response to oxidative stress.
Collapse
Affiliation(s)
- Ji-Yeon Bae
- Cancer Research Institute, Seoul National University, Jongno-Gu, Seoul, Korea
| | | | | | | |
Collapse
|
11
|
Larsson M, Broman J. Pathway-specific bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II at spinal nociceptive synapses after acute noxious stimulation. J Neurosci 2006; 26:4198-205. [PMID: 16624940 PMCID: PMC6674005 DOI: 10.1523/jneurosci.0352-06.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An intensely painful stimulus may lead to hyperalgesia, the enhanced sensation of subsequent painful stimuli. This is commonly believed to involve facilitated transmission of sensory signals in the spinal cord, possibly by a long-term potentiation-like mechanism. However, plasticity of identified synapses in intact hyperalgesic animals has not been reported. Here, we show, using neuronal tracing and postembedding immunogold labeling, that after acute noxious stimulation (hindpaw capsaicin injections), immunolabeling of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and of CaMKII phosphorylated at Thr(286/287) (pCaMKII) are upregulated postsynaptically at synapses established by peptidergic primary afferent fibers in the superficial dorsal horn of intact rats. In contrast, postsynaptic pCaMKII immunoreactivity was instead downregulated at synapses of nonpeptidergic primary afferent C-fibers; this loss of pCaMKII immunolabel occurred selectively at distances greater than approximately 20 nm from the postsynaptic membrane and was accompanied by a smaller reduction in total CaMKII contents of these synapses. Both pCaMKII and CaMKII immunogold labeling were unaffected at synapses formed by presumed low-threshold mechanosensitive afferent fibers. Thus, distinct molecular modifications, likely indicative of plasticity of synaptic strength, are induced at different populations of presumed nociceptive primary afferent synapse by intense noxious stimulation, suggesting a complex modulation of parallel nociceptive pathways in inflammatory hyperalgesia. Furthermore, the activity-induced loss of certain postsynaptic pools of autophosphorylated CaMKII at previously unmanipulated synapses supports a role for the kinase in basal postsynaptic function.
Collapse
Affiliation(s)
- Max Larsson
- Division of Neuroscience, Department of Experimental Medical Science, Pain Research Center, Lund University, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
12
|
Larsson M, Broman J. Different basal levels of CaMKII phosphorylated at Thr286/287 at nociceptive and low-threshold primary afferent synapses. Eur J Neurosci 2005; 21:2445-58. [PMID: 15932602 DOI: 10.1111/j.1460-9568.2005.04081.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Postsynaptic autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286/287 is crucial for the induction of long-term potentiation at many glutamatergic synapses, and has also been implicated in the persistence of synaptic potentiation. However, the availability of CaMKII phosphorylated at Thr286/287 at individual glutamatergic synapses in vivo is unclear. We used post-embedding immunogold labelling to quantitatively analyse the ultrastructural localization of CaMKII phosphorylated at Thr286/287 (pCaMKII) at synapses formed by presumed nociceptive and low-threshold mechanosensitive primary afferent nerve endings in laminae I-IV of rat spinal cord. Immunogold labelling was enriched in the postsynaptic densities of such synapses, consistent with observations in pre-embedding immunoperoxidase-stained dorsal horn. Presynaptic axoplasm also exhibited sparse immunogold labelling, in peptidergic terminals partly associated with dense core vesicles. Analysis of single or serial pCaMKII-immunolabelled sections indicated that the large majority of synapses formed either by presumed peptidergic or non-peptidergic nociceptive primary afferent terminals in laminae I-II of the spinal cord, or by presumed low-threshold mechanosensitive primary afferent terminals in laminae IIi-IV, contained pCaMKII in their postsynaptic density. However, the postsynaptic levels of pCaMKII immunolabelling at low-threshold primary afferent synapses were only approximately 50% of those at nociceptive synapses. These results suggest that constitutively autophosphorylated CaMKII in the postsynaptic density is a common characteristic of glutamatergic synapses, thus potentially contributing to maintenance of synaptic efficacy. Furthermore, pCaMKII appears to be differentially regulated between high- and low-threshold primary afferent synapses, possibly reflecting different susceptibility to synaptic plasticity between these afferent pathways.
Collapse
Affiliation(s)
- Max Larsson
- Department of Experimental Medical Science, Division of Neuroscience, Lund University, BMC F10, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
13
|
Kim M, Cho SY, Han IS, Koh SD, Perrino BA. CaM kinase II and phospholamban contribute to caffeine-induced relaxation of murine gastric fundus smooth muscle. Am J Physiol Cell Physiol 2005; 288:C1202-10. [PMID: 15659716 DOI: 10.1152/ajpcell.00299.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine has been shown to increase the Ca2+release frequency (Ca2+sparks) from the sarcoplasmic reticulum (SR) through ryanodine-sensitive stores and relax gastric fundus smooth muscle. Increased Ca2+store refilling increases the frequency of Ca2+release events and store refilling is enhanced by CaM kinase II (CaMKII) phosphorylation of phospholamban (PLB). These findings suggest that transient, localized Ca2+release events from the SR may activate CaMKII and contribute to relaxation by enhancing store refilling due to PLB Thr17 phosphorylation. To investigate this possibility, we examined the effects of caffeine on CaMKII, muscle tone, and PLB phosphorylation in murine gastric fundus smooth muscle. Caffeine (1 mM) hyperpolarized and relaxed murine gastric fundus smooth muscle and activated CaMKII. Ryanodine, tetracaine, or cyclopiazonic acid each prevented CaMKII activation and significantly inhibited caffeine-induced relaxation. The large-conductance Ca2+-activated K+channel blocker iberiotoxin, but not apamin, partially inhibited caffeine-induced relaxation. Caffeine-induced CaMKII activation increased PLB Thr17, but not PLB Ser16 phosphorylation. 3-Isobutyl-1-methylxanthine increased PLB Ser16 phosphorylation, but not PLB Thr17 phosphorylation. The CaMKII inhibitor KN-93 inhibited caffeine-induced relaxation and PLB Thr17 phosphorylation. These results show that caffeine-induced CaMKII activation and PLB phosphorylation play a role in the relaxation of gastric fundus smooth muscles.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Physiology and Cell Biology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Anderson Bldg./MS352, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
14
|
Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD. Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 2005; 288:C304-13. [PMID: 15456698 DOI: 10.1152/ajpcell.00293.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The voltage-dependent K+channel 4.3 (Kv4.3) is one of the major molecular correlates encoding a class of rapidly inactivating K+currents, including the transient outward current in the heart ( Ito) and A currents ( IA) in neuronal and smooth muscle preparations. Recent studies have shown that Itoin human atrial myocytes and IAin murine colonic myocytes are modulated by Ca2+/calmodulin-dependent protein kinase II (CaMKII); however, the molecular target of CaMKII in these studies has not been elucidated. We performed experiments to investigate whether CaMKII could regulate Kv4.3 currents directly. Inclusion of the autothiophosphorylated form of CaMKII in the patch pipette (10 nM) prolonged Kv4.3 currents such that the time required to reach 50% inactivation from peak more than doubled, with positive shifts in voltage dependence of both activation and inactivation. In contrast, the rate of recovery from inactivation was accelerated under these conditions. CaMKII-inhibitory peptide or KN-93 produced effects opposite to that above; thus the rate of inactivation was increased, and recovery from inactivation decreased. A number of mutagenesis experiments were conducted on the three candidate CaMKII consensus sequence sites on the channel. Mutations at S550A, located at the COOH-terminal region of the channel, resulted in currents that inactivated more rapidly but recovered from inactivation at a slower rate than that of wild-type controls. In addition, these currents were unaffected by dialysis with either autothiophosphorylated CaMKII or the specific inhibitory peptide of CaMKII, suggesting that CaMKII slows the inactivation and accelerates the rate of recovery from inactivation of Kv4.3 currents by a direct effect at S550A, located at the COOH-terminal region of the channel.
Collapse
Affiliation(s)
- Gerard P Sergeant
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takeuchi T, Kushida M, Hirayama N, Kitayama M, Fujita A, Hata F. Mechanisms involved in carbachol-induced Ca(2+) sensitization of contractile elements in rat proximal and distal colon. Br J Pharmacol 2004; 142:657-66. [PMID: 15159278 PMCID: PMC1575042 DOI: 10.1038/sj.bjp.0705820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Mechanisms involved in Ca(2+) sensitization of contractile elements induced by the activation of muscarinic receptors in membrane-permeabilized preparations of the rat proximal and distal colon were studied. 2. In alpha-toxin-permeabilized preparations from the rat proximal and distal colon, Ca(2+) induced a rapid phasic and subsequent tonic component. After Ca(2+)-induced contraction reached a plateau, guanosine 5'-triphosphate (GTP) and carbachol (CCh) in the presence of GTP further contracted preparations of both the proximal and distal colon (Ca(2+) sensitization). Y-27632, a rho-kinase inhibitor, inhibited GTP plus CCh-induced Ca(2+) sensitization more significantly in the proximal colon than in the distal colon. 3. Y-27632 at 10 microm had no effect on Ca(2+)-induced contraction or slightly inhibited phorbol-12,13-dibutyrate-induced Ca(2+) sensitization in either proximal or distal colon. Chelerythrine, a protein kinase C inhibitor, inhibited GTP plus CCh-induced Ca(2+) sensitization in the distal colon, but not in the proximal colon. The component of Ca(2+) sensitization that persisted after the chelerythrine treatment was completely inhibited by Y-27632. 4. In beta-escin-permeabilized preparations of the proximal colon, C3 exoenzyme completely inhibited GTP plus CCh-induced Ca(2+) sensitization, but PKC(19-31) did not. In the distal colon, C3 exoenzyme abolished GTP-induced Ca(2+) sensitization. It inhibited CCh-induced sensitization by 50 % and the remaining component was inhibited by PKC(19-31). 5. These results suggest that both protein kinase C and rho pathways in parallel mediate the Ca(2+) sensitization coupled to activation of muscarinic receptors in the rat distal colon, whereas the rho pathway alone mediates this action in the proximal colon.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|