1
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
2
|
Hernández‐Ochoa EO, Melville Z, Vanegas C, Varney KM, Wilder PT, Melzer W, Weber DJ, Schneider MF. Loss of S100A1 expression leads to Ca 2+ release potentiation in mutant mice with disrupted CaM and S100A1 binding to CaMBD2 of RyR1. Physiol Rep 2018; 6:e13822. [PMID: 30101473 PMCID: PMC6087734 DOI: 10.14814/phy2.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) and S100A1 fine-tune skeletal muscle Ca2+ release via opposite modulation of the ryanodine receptor type 1 (RyR1). Binding to and modulation of RyR1 by CaM and S100A1 occurs predominantly at the region ranging from amino acid residue 3614-3640 of RyR1 (here referred to as CaMBD2). Using synthetic peptides, it has been shown that CaM binds to two additional regions within the RyR1, specifically residues 1975-1999 and 4295-4325 (CaMBD1 and CaMBD3, respectively). Because S100A1 typically binds to similar motifs as CaM, we hypothesized that S100A1 could also bind to CaMBD1 and CaMBD3. Our goals were: (1) to establish whether S100A1 binds to synthetic peptides containing CaMBD1 and CaMBD3 using isothermal calorimetry (ITC), and (2) to identify whether S100A1 and CaM modulate RyR1 Ca2+ release activation via sites other than CaMBD2 in RyR1 in its native cellular context. We developed the mouse model (RyR1D-S100A1KO), which expresses point mutation RyR1-L3625D (RyR1D) that disrupts the modulation of RyR1 by CaM and S100A1 at CaMBD2 and also lacks S100A1 (S100A1KO). ITC assays revealed that S100A1 binds with different affinities to CaMBD1 and CaMBD3. Using high-speed Ca2+ imaging and a model for Ca2+ binding and transport, we show that the RyR1D-S100A1KO muscle fibers exhibit a modest but significant increase in myoplasmic Ca2+ transients and enhanced Ca2+ release flux following field stimulation when compared to fibers from RyR1D mice, which were used as controls to eliminate any effect of binding at CaMBD2, but with preserved S100A1 expression. Our results suggest that S100A1, similar to CaM, binds to CaMBD1 and CaMBD3 within the RyR1, but that CaMBD2 appears to be the primary site of RyR1 regulation by CaM and S100A1.
Collapse
Affiliation(s)
- Erick O. Hernández‐Ochoa
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Zephan Melville
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Camilo Vanegas
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Kristen M. Varney
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Paul T. Wilder
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Werner Melzer
- Institute of Applied PhysiologyUlm UniversityUlmGermany
| | - David J. Weber
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
- Center for Biomolecular Therapeutics (CBT)University of Maryland School of MedicineMaryland
| | - Martin F. Schneider
- Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreMaryland
| |
Collapse
|
3
|
Caprara GA, Perni S, Morabito C, Mariggiò MA, Guarnieri S. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates. Eur J Histochem 2014; 58:2453. [PMID: 25578978 PMCID: PMC4289850 DOI: 10.4081/ejh.2014.2453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/22/2022] Open
Abstract
Growth-associated protein 43 (GAP43), is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs) and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes), and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.
Collapse
|
4
|
Dussor G, Yan J, Xie JY, Ossipov MH, Dodick DW, Porreca F. Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci 2014; 5:1085-96. [PMID: 25138211 PMCID: PMC4240253 DOI: 10.1021/cn500083e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
![]()
Migraine is increasingly understood
to be a disorder of the brain.
In susceptible individuals, a variety of “triggers”
may influence altered central excitability, resulting in the activation
and sensitization of trigeminal nociceptive afferents surrounding
blood vessels (i.e., the trigeminovascular system), leading to migraine
pain. Transient receptor potential (TRP) channels are expressed in
a subset of dural afferents, including those containing calcitonin
gene related peptide (CGRP). Activation of TRP channels promotes excitation
of nociceptive afferent fibers and potentially lead to pain. In addition
to pain, allodynia to mechanical and cold stimuli can result from
sensitization of both peripheral afferents and of central pain pathways.
TRP channels respond to a variety of endogenous conditions including
chemical mediators and low pH. These channels can be activated by
exogenous stimuli including a wide range of chemical and environmental
irritants, some of which have been demonstrated to trigger migraine
in humans. Activation of TRP channels can elicit CGRP release, and
blocking the effects of CGRP through receptor antagonism or antibody
strategies has been demonstrated to be effective in the treatment
of migraine. Identification of approaches that can prevent activation
of TRP channels provides an additional novel strategy for discovery
of migraine therapeutics.
Collapse
Affiliation(s)
- Gregory Dussor
- School
of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, United States
| | - J. Yan
- Department
of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer Y. Xie
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - Michael H. Ossipov
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - David W. Dodick
- Department
of Neurology, Mayo Clinic Arizona, Phoenix, Arizona 85054, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| |
Collapse
|
5
|
Pal R, Monroe TO, Palmieri M, Sardiello M, Rodney GG. Rotenone induces neurotoxicity through Rac1-dependent activation of NADPH oxidase in SHSY-5Y cells. FEBS Lett 2013; 588:472-81. [PMID: 24374334 DOI: 10.1016/j.febslet.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases are attributed to impairment of the ubiquitin-proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Pal R, Basu Thakur P, Li S, Minard C, Rodney GG. Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS One 2013; 8:e63989. [PMID: 23704967 PMCID: PMC3660327 DOI: 10.1371/journal.pone.0063989] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/11/2013] [Indexed: 01/10/2023] Open
Abstract
Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47phox, we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47phox deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Poulami Basu Thakur
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shumin Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - George G. Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Prosser BL, Hernández-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium 2011; 50:323-31. [PMID: 21784520 DOI: 10.1016/j.ceca.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/05/2011] [Indexed: 11/16/2022]
Abstract
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation-contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation-contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation-contraction coupling.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology (BioMET), Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
8
|
Sporer KRB, Tempelman RJ, Ernst CW, Reed KM, Velleman SG, Strasburg GM. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle. BMC Genomics 2011; 12:143. [PMID: 21385442 PMCID: PMC3060885 DOI: 10.1186/1471-2164-12-143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/08/2011] [Indexed: 11/12/2022] Open
Abstract
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products.
Collapse
Affiliation(s)
- Kelly R B Sporer
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
9
|
Yamaguchi N, Prosser BL, Ghassemi F, Xu L, Pasek DA, Eu JP, Hernández-Ochoa EO, Cannon BR, Wilder PT, Lovering RM, Weber D, Melzer W, Schneider MF, Meissner G. Modulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle expressing ryanodine receptor impaired in regulation by calmodulin and S100A1. Am J Physiol Cell Physiol 2011; 300:C998-C1012. [PMID: 21289290 DOI: 10.1152/ajpcell.00370.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Dept. of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Michaelson LP, Shi G, Ward CW, Rodney GG. Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle Nerve 2010; 42:522-9. [PMID: 20730875 DOI: 10.1002/mus.21724] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the production of reactive oxygen species (ROS) during muscle contractile activity has been linked to both positive and negative adaptive responses, the sites for ROS generation within working muscle are not clearly defined. We assessed cytosolic ROS production and mitochondrial redox potential with a targeted redox-sensitive green fluorescent protein during repetitive field stimulation of single mature myofibers. Cytosolic ROS production increased by 94%, an effect that was abolished by pretreatment with the reducing agent dithiothreitol. Mitochondrial redox potential was not altered during muscle contraction. In contrast, activity-dependent ROS production was ablated by an inhibitor of NADPH oxidase. We provide the first report on dynamic ROS production from mitochondria in single living myofibers and suggest that the mitochondria are not the major source of ROS during skeletal muscle contraction. Alternatively, our data support a role for NADPH oxidase-derived ROS during contractile activity.
Collapse
Affiliation(s)
- Luke P Michaelson
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
11
|
Prosser BL, Hernández-Ochoa EO, Lovering RM, Andronache Z, Zimmer DB, Melzer W, Schneider MF. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol 2010; 299:C891-902. [PMID: 20686070 DOI: 10.1152/ajpcell.00180.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of S100A1 in skeletal muscle is just beginning to be elucidated. We have previously shown that skeletal muscle fibers from S100A1 knockout (KO) mice exhibit decreased action potential (AP)-evoked Ca(2+) transients, and that S100A1 binds competitively with calmodulin to a canonical S100 binding sequence within the calmodulin-binding domain of the skeletal muscle ryanodine receptor. Using voltage clamped fibers, we found that Ca(2+) release was suppressed at all test membrane potentials in S100A1(-/-) fibers. Here we examine the role of S100A1 during physiological AP-induced muscle activity, using an integrative approach spanning AP propagation to muscle force production. With the voltage-sensitive indicator di-8-aminonaphthylethenylpyridinium, we first demonstrate that the AP waveform is not altered in flexor digitorum brevis muscle fibers isolated from S100A1 KO mice. We then use a model for myoplasmic Ca(2+) binding and transport processes to calculate sarcoplasmic reticulum Ca(2+) release flux initiated by APs and demonstrate decreased release flux and greater inactivation of flux in KO fibers. Using in vivo stimulation of tibialis anterior muscles in anesthetized mice, we show that the maximal isometric force response to twitch and tetanic stimulation is decreased in S100A1(-/-) muscles. KO muscles also fatigue more rapidly upon repetitive stimulation than those of wild-type counterparts. We additionally show that fiber diameter, type, and expression of key excitation-contraction coupling proteins are unchanged in S100A1 KO muscle. We conclude that the absence of S100A1 suppresses physiological AP-induced Ca(2+) release flux, resulting in impaired contractile activation and force production in skeletal muscle.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Shirokova N, Niggli E. Studies of RyR function in situ. Methods 2008; 46:183-93. [PMID: 18848990 DOI: 10.1016/j.ymeth.2008.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022] Open
Abstract
The ryanodine receptors (RyRs) are intracellular Ca2+ release channels of the sarcoplasmic reticulum (SR) involved in many cellular responses, including muscle excitation-contraction coupling. Multiple biochemical and biophysical methods are available to study RyR functions. However, most of them are somewhat limited because they can only be used to examine channels which are purified from the SR and no longer in their natural environment. In this review we discuss optical methods for studying RyR functions in situ. We describe several techniques for the investigation of local (microscopic) intracellular Ca2+ signals (a.k.a Ca2+ sparks) by means of confocal microscopy and flash photolysis of caged compounds. We discuss how these studies can and will continue to contribute to our understanding of RyR function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Natalia Shirokova
- Department of Pharmacology & Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | |
Collapse
|
13
|
Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem 2008; 283:26676-83. [PMID: 18650434 PMCID: PMC2546546 DOI: 10.1074/jbc.m804432200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Indexed: 11/06/2022] Open
Abstract
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.
Collapse
Affiliation(s)
- Nathan T. Wright
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| | - Benjamin L. Prosser
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| | - Kristen M. Varney
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| | - Danna B. Zimmer
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| | - Martin F. Schneider
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| | - David J. Weber
- Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore,
Maryland 21201 and the Department of
Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M
University, College Station, Texas 77843-44467
| |
Collapse
|