1
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
2
|
Marini P, Cowie P, Ayar A, Bewick GS, Barrow J, Pertwee RG, MacKenzie A, Tucci P. M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter. Int J Mol Sci 2023; 24:ijms24021308. [PMID: 36674826 PMCID: PMC9867084 DOI: 10.3390/ijms24021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Philip Cowie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Barrow
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
3
|
Wang F, Yu J, Lin P, Sigalas C, Zhang S, Gong Y, Sitsapesan R, Song L. The ryanodine receptor mutational characteristics and its indication for cancer prognosis. Sci Rep 2022; 12:16113. [PMID: 36167878 PMCID: PMC9515073 DOI: 10.1038/s41598-022-19905-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
Ca2+ signaling is altered substantially in many cancers. The ryanodine receptors (RYRs) are among the key ion channels in Ca2+ signaling. This study aimed to establish the mutational profile of RYR in cancers and investigate the correlation between RYR alterations and cancer phenotypes. The somatic mutation and clinical data of 11,000 cancer patients across 33 cancer types was downloaded from The Cancer Genome Atlas (TCGA) database. Subsequent data processing was performed with corresponding packages of the R software. Mutational profile was analyzed and its correlation with tumor mutational burden (TMB), patient prognosis, age and smoking status was analyzed and compared. All three RYR isoforms exhibited random mutational distribution without hotspot mutations when all cancers were analyzed together. The number of mutations in RYR2 (2388 mutations) far overweight that of RYR1 (1439 mutations) and RYR3 (1573 mutations). Linear correlation was observed between cumulative TMB and cumulative number of mutations for all RYR isoforms. Patients with RYR mutations exhibited significantly higher TMB than those without RYR mutations for most cancer types. Strong correlation was also revealed in the average number of mutations per person between pairs of RYR isoforms. No stratification of patient overall survival (OS) by mutational status was found for all three RYR isoforms when all cancers were analyzed together, however, significant stratification of OS by RYR mutations was revealed in several individual cancers, most strikingly in LUAD (P = 0.0067, RYR1), BLCA (P = 0.00071, RYR2), LUSC (P = 0.036, RYR2) and KIRC (P = 0.0042, RYR3). Furthermore, RYR mutations were correlated with higher age, higher smoking history grading and higher number of pack years. Characteristic mutation profile of RYRs in cancers has been revealed for the first time. RYR mutations were correlated with TMB, age, smoking status and capable of stratifying the prognosis of patients in several cancer types.
Collapse
Affiliation(s)
- Fenglin Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jingbo Yu
- Department of Hepatobiliary Surgery, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, 116033, Liaoning Province, People's Republic of China
| | - Ping Lin
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, People's Republic of China
| | - Charalampos Sigalas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Shibo Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Lele Song
- Department of Radiotherapy, The Eighth Medical Center of the Chinese PLA General Hospital, Beijing, 100091, People's Republic of China.
| |
Collapse
|
4
|
Chen PH, Chung CC, Liu SH, Kao YH, Chen YJ. Lithium Treatment Improves Cardiac Dysfunction in Rats Deprived of Rapid Eye Movement Sleep. Int J Mol Sci 2022; 23:ijms231911226. [PMID: 36232526 PMCID: PMC9570242 DOI: 10.3390/ijms231911226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid eye movement (REM) sleep deprivation triggers mania and induces cardiac fibrosis. Beyond neuroprotection, lithium has cardioprotective potential and antifibrotic activity. This study investigated whether lithium improved REM sleep deprivation-induced cardiac dysfunction and evaluated the potential mechanisms. Transthoracic echocardiography, histopathological analysis, and Western blot analysis were performed in control and REM sleep-deprived rats with or without lithium treatment (LiCl of 1 mmol/kg/day administered by oral gavage for 4 weeks) in vivo and in isolated ventricular preparations. The results revealed that REM sleep-deprived rats exhibited impaired contractility and greater fibrosis than control and lithium-treated REM sleep-deprived rats. Western blot analysis showed that REM sleep-deprived hearts had higher expression levels of transforming growth factor beta (TGF-β), phosphorylated Smad 2/3, and alpha-smooth muscle actin than lithium-treated REM sleep-deprived and control hearts. Moreover, lithium-treated REM sleep-deprived hearts had lower expression of angiotensin II type 1 receptor, phosphorylated nuclear factor kappa B p65, calcium release-activated calcium channel protein 1, transient receptor potential canonical (TRPC) 1, and TRPC3 than REM sleep-deprived hearts. The findings suggest that lithium attenuates REM sleep deprivation-induced cardiac fibrogenesis and dysfunction possibly through the downregulation of TGF-β, angiotensin II, and Ca2+ signaling.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Shuen-Hsin Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.K.); (Y.-J.C.)
| |
Collapse
|
5
|
Augustynek B, Gyimesi G, Dernič J, Sallinger M, Albano G, Klesse GJ, Kandasamy P, Grabmayr H, Frischauf I, Fuster DG, Peinelt C, Hediger MA, Bhardwaj R. Discovery of novel gating checkpoints in the Orai1 calcium channel by systematic analysis of constitutively active mutants of its paralogs and orthologs. Cell Calcium 2022; 105:102616. [PMID: 35792401 DOI: 10.1016/j.ceca.2022.102616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
In humans, there are three paralogs of the Orai Ca2+ channel that form the core of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still under active investigation, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating checkpoints among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the "ANSGA" nexus mutations in TM4 of human Orai1, which is reported to mimic the STIM1-activated state of the channel. In investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, that are not conserved among paralogs and that seem to be crucial for the channel activation triggered by the "ANSGA" mutations in Orai1. However, mutations of the same residues still allow gating of Orai1 by STIM1, suggesting that the ANSGA mutant of Orai1 may not be a surrogate for the STIM1-activated state of the Orai1 channel. Our results shed new light on these important gating checkpoints and show that the gating mechanism of Orai channels is affected by multiple factors that are not necessarily conserved among orai homologs, such as the TM4-TM3 coupling.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Jan Dernič
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Giuseppe Albano
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriel J Klesse
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Daniel G Fuster
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland.
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland; Current address: Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Drive, NC 27709, USA.
| |
Collapse
|
6
|
Johnson J, Blackman R, Gross S, Soboloff J. Control of STIM and Orai function by post-translational modifications. Cell Calcium 2022; 103:102544. [PMID: 35151050 PMCID: PMC8960353 DOI: 10.1016/j.ceca.2022.102544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Store-operated calcium entry (SOCE) is mediated by the endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecules (STIM1 and STIM2) and the plasma membrane Orai (Orai1, Orai2, Orai3) Ca2+ channels. Although primarily regulated by ER Ca2+ content, there have been numerous studies over the last 15 years demonstrating that all 5 proteins are also regulated through post-translational modification (PTM). Focusing primarily on phosphorylation, glycosylation and redox modification, this review focuses on how PTMs modulate the key events in SOCE; Ca2+ sensing, STIM translocation, Orai interaction and/or Orai1 activation.
Collapse
|
7
|
The prognostic value of Piezo1 in breast cancer patients with various clinicopathological features. Anticancer Drugs 2021; 32:448-455. [PMID: 33559992 DOI: 10.1097/cad.0000000000001049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of piezo-type mechanosensitive ion channel component 1 (Piezo1) in sensing extracellular mechanical stress have been well investigated. Recently, Piezo1's vital role in cancerogenesis has been demonstrated by many studies. Nonetheless, the prognostic value of Piezo1 in cancer still remains unexplored and unclear. This article aims to investigate the prognostic value of Piezo1 in breast cancer. Human Protein Atlas and the Cancer Genome Atlas (TCGA) databases were used to examine Piezo1 expression in different human tissues and human cell lines. The discrepancies of Piezo1 mRNA expression in breast cancer patients with different clinicopathological features were assessed using bc-GenExMiner. The prognostic value of Piezo1 in breast cancer patients was evaluated using Kaplan-Meier plotter. Piezo1 mRNA was extensively expressed in human tissues and cell lines, particularly in breast and cancerous breast cancer cell line MCF7. High Piezo1 expression was found correlated with poor prognosis of breast cancer. Survival analysis further confirmed unfavorable prognosis of high Piezo1 expression in breast cancer patients with lymph node positive, estrogen receptor positive, Grade 2 (Scarff-Bloom-Richardson grading system), luminal A, and human epidermal growth factor receptor 2 overexpression, respectively. This study suggested that Piezo1 can serve as a prognostic indicator of breast cancer.
Collapse
|
8
|
ORAI1 and ORAI2 modulate murine neutrophil calcium signaling, cellular activation, and host defense. Proc Natl Acad Sci U S A 2020; 117:24403-24414. [PMID: 32929002 DOI: 10.1073/pnas.2008032117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signals are initiated in immune cells by the process of store-operated calcium entry (SOCE), where receptor activation triggers transient calcium release from the endoplasmic reticulum, followed by opening of plasma-membrane calcium-release activated calcium (CRAC) channels. ORAI1, ORAI2, and ORAI3 are known to comprise the CRAC channel; however, the contributions of individual isoforms to neutrophil function are not well understood. Here, we show that loss of ORAI1 partially decreases calcium influx, while loss of both ORAI1 and ORAI2 completely abolishes SOCE. In other immune-cell types, loss of ORAI2 enhances SOCE. In contrast, we find that ORAI2-deficient neutrophils display decreased calcium influx, which is correlated with measurable differences in the regulation of neutrophil membrane potential via KCa3.1. Decreased SOCE in ORAI1-, ORAI2-, and ORAI1/2-deficient neutrophils impairs multiple neutrophil functions, including phagocytosis, degranulation, leukotriene, and reactive oxygen species (ROS) production, rendering ORAI1/2-deficient mice highly susceptible to staphylococcal infection. This study demonstrates that ORAI1 and ORAI2 are the primary components of the neutrophil CRAC channel and identifies subpopulations of neutrophils where cell-membrane potential functions as a rheostat to modulate the SOCE response. These findings have implications for mechanisms that modulate neutrophil function during infection, acute and chronic inflammatory conditions, and cancer.
Collapse
|
9
|
Lv X, Miao C, Liu M, Wang X, Wang L, Wang D. 17β-Estradiol via Orai1 activates calcium mobilization to induce cell proliferation in epithelial ovarian cancer. J Biochem Mol Toxicol 2020; 34:e22603. [PMID: 32844545 DOI: 10.1002/jbt.22603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal estrogen-sensitive gynecological cancer. Studies have reported that estrogen induces rapid cellular calcium mobilization in cells and can determine the fate of a cell. We found that estrogen increased the calcium release-activated calcium channel modulator 1 (Orai1) protein expression levels in SK-OV-3 cells. However, to date, there has been no research on the functional relationship and molecular mechanism of estrogen-regulating Orai1 during EOC development. In our study, Orai1 had a high expression level in high-grade serous ovarian tumor tissues and SK-OV-3 cells. Estrogen promoted cell proliferation and migration while inhibiting cell apoptosis in SK-OV-3 cells. Orai1 silencing suppressed estrogen-induced cell migration and proliferation. Overexpression of Orai1, however, enhanced the ability of 17β-estradiol (E2) to exert its function. Estrogen induced rapid calcium influx in SK-OV-3 cells. Knockdown of Orai1 in SK-OV-3 cells blocked E2-induced stored-operated Ca2+ influx. The messenger RNA expression of caspase 3, matrix metallopeptidase 1, and cyclin-dependent kinase 6 were regulated via Orai1 under E2 treatment. Our results suggest that estrogen, by regulating Orai1, induced calcium influx to determine cell fate.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Mengyan Liu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| | - Xinbo Wang
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lin Wang
- School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Gavali JT, Carrillo ED, García MC, Sánchez JA. The mitochondrial K-ATP channel opener diazoxide upregulates STIM1 and Orai1 via ROS and the MAPK pathway in adult rat cardiomyocytes. Cell Biosci 2020; 10:96. [PMID: 32817784 PMCID: PMC7424994 DOI: 10.1186/s13578-020-00460-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Background Openers of mitochondrial adenosine triphosphate-dependent potassium (mKATP) channels like diazoxide increase reactive oxygen species (ROS) production in cardiac cells and reduce Ca2+ elevations produced by ischemia–reperfusion, protecting the heart from damage. In this study we tested the hypothesis that opening mKATP channels regulates expression of the major components of store-operated Ca2+ entry (SOCE) STIM1 and Orai1. Results Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot experiments showed that diazoxide increased expression of STIM1 and Orai1 at the mRNA and protein levels, respectively, in adult rat cardiomyocytes. Immunofluorescence analyses revealed that diazoxide also disrupted the striated distribution pattern of STIM1. These effects were prevented by the ROS scavenger N-acetyl cysteine (NAC), the mKATP channel antagonist 5-hydroxydecanoate (5-HD), or the protein synthesis inhibitor cycloheximide (CHX). Confocal microscopy revealed that diazoxide also led to nuclear translocation of the transcription factors c-Fos and NFκB, which was also blocked by NAC or 5-HD. Finally, the MAPK pathway inhibitor UO126 attenuated diazoxide-induced upregulation of STIM1 and Orai1 expression. Conclusions Our results suggest that opening mitochondrial potassium ATP channels with diazoxide upregulates the expression of STIM1 and Orai1 by de novo synthesis by a mechanism that involves NFkB, c-Fos, and ROS via MAPK/ERK signaling.
Collapse
Affiliation(s)
- Joice T Gavali
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| |
Collapse
|
11
|
Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, Lis A. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8 + T cells of elderly mice. Aging (Albany NY) 2020; 12:3266-3286. [PMID: 32062611 PMCID: PMC7066920 DOI: 10.18632/aging.102809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022]
Abstract
Ca2+ is a crucial second messenger for proper T cell function. Considering the relevance of Ca2+ signals for T cell functionality it is surprising that no mechanistic insights into T cell Ca2+ signals from elderly individuals are reported. The main Ca2+ entry mechanism in T cells are STIM-activated Orai channels. Their role during lymphocyte aging is completely unknown. Here, we report not only reduced Ca2+ signals in untouched and stimulated, but also in central and effector memory CD8+ T cells from elderly (18-24 months) compared to adult (3-6 months) mice. Two mechanisms contribute to the overall reduction in Ca2+ signals of CD8+ T cells of elderly mice: 1) Reduced Ca2+ currents through Orai channels due to decreased expressions of STIMs and Orais. 2) A faster extrusion of Ca2+ owing to an increased expression of PMCA4. The reduced Ca2+ signals correlated with a resistance of the cytotoxic efficiency of CD8+ T cells to varying free [Ca2+]ext with age. In summary, reduced STIM/Orai expression and increased Ca2+ clearing rates following enhanced PMCA4 expression contribute to reduced Ca2+ signals in CD8+ T cells of elderly mice. These changes are apparently relevant to immune function as they reduce the Ca2+ dependency of CTL cytotoxicity.
Collapse
Affiliation(s)
- Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Romy Steiner
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany.,Present address: Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Maik Konrad
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| |
Collapse
|
12
|
Bhuvaneshwari S, Sankaranarayanan K. Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder. Curr Drug Targets 2019; 21:55-75. [PMID: 31556856 DOI: 10.2174/1389450120666190926150258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders. OBJECTIVE This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation. RESULTS AND CONCLUSION Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.
Collapse
Affiliation(s)
- Sampath Bhuvaneshwari
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| |
Collapse
|
13
|
Monaco S, Jahraus B, Samstag Y, Bading H. Conditions of limited calcium influx (CLCI) inhibits IL2 induction and favors expression of anergy-related genes in TCR/CD3 and CD28 costimulated primary human T cells. Mol Immunol 2019; 114:81-87. [PMID: 31344552 DOI: 10.1016/j.molimm.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Calcium is a key regulator of the T cell immune response. Depending on the spatial properties (nucleus versus cytoplasm) of the calcium signals generated after CD3xCD28 stimulation, primary human T cells either mount a productive immune response or develop tolerance. Nuclear calcium acts as a genomic decision maker: during T cell activation, it drives expression of genes associated with a productive immune response while in its absence, stimulated T cells acquire an anergy-like gene profile. Selective inhibition of nuclear calcium signaling in stimulated T cells blocks the productive immune response and directs the cells towards an anergy-like state. Here we show that the two transcriptional programs that include, respectively, the 'activation gene', interleukin 2 (IL2) and 'anergy-related genes', EGR2, EGR3, and CREM have different requirements for transmembrane calcium flux. By either lowering extracellular calcium concentrations with EGTA or using low concentrations of the ORAI blockers, BTP2 or RO2959, we reduced transmembrane calcium flux in human primary T cells stimulated with CD3xCD28. These 'conditions of limited calcium influx' (CLCI) blocked CD3xCD28-induced IL2 expression but only moderately affected induction of the anergy-related genes EGR2, EGR3, and CREM. We observed no difference in NFAT2 nuclear translocation after CD3xCD28 stimulation between normal conditions and CLCI. These results indicate that CLCI favors expression of anergy-related genes in activated human T cells. CLCI may be used to develop novel means for pro-tolerance immunosuppressive treatments.
Collapse
Affiliation(s)
- Sara Monaco
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany.
| | - Beate Jahraus
- Department of Immunology, Heidelberg University, 69120, Heidelberg, Germany.
| | - Yvonne Samstag
- Department of Immunology, Heidelberg University, 69120, Heidelberg, Germany.
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
15
|
Bhandage AK, Jin Z, Korol SV, Tafreshiha AS, Gohel P, Hellgren C, Espes D, Carlsson PO, Sundström-Poromaa I, Birnir B. Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes. PLoS One 2018; 13:e0208981. [PMID: 30543678 PMCID: PMC6292698 DOI: 10.1371/journal.pone.0208981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca2+ channels in the plasma membrane are the voltage-gated Ca2+ (CaV) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and CaV gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the CaV2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the CaV 2.1 and CaV3.2 genes were up-regulated only in pregnancy and the CaV1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and CaV genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.
Collapse
Affiliation(s)
- Amol K Bhandage
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Charlotte Hellgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Diener C, Hart M, Alansary D, Poth V, Walch-Rückheim B, Menegatti J, Grässer F, Fehlmann T, Rheinheimer S, Niemeyer BA, Lenhof HP, Keller A, Meese E. Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis 2018; 9:1008. [PMID: 30262862 PMCID: PMC6160487 DOI: 10.1038/s41419-018-1050-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Adjusting intracellular calcium signaling is an important feature in the regulation of immune cell function and survival. Here we show that miR-34a-5p, a small non-coding RNA that is deregulated in many common diseases, is a regulator of store-operated Ca2+ entry (SOCE) and calcineurin signaling. Upon miR-34a-5p overexpression, we observed both a decreased depletion of ER calcium content and a decreased Ca2+ influx through Ca2+ release-activated Ca2+ channels. Based on an in silico target prediction we identified multiple miR-34a-5p target genes within both pathways that are implicated in the balance between T-cell activation and apoptosis including ITPR2, CAMLG, STIM1, ORAI3, RCAN1, PPP3R1, and NFATC4. Functional analysis revealed a decrease in Ca2+ activated calcineurin pathway activity measured by a reduced IL-2 secretion due to miR-34a-5p overexpression. Impacting SOCE and/or downstream calcineurin/NFAT signaling by miR-34a-5p offers a possible future approach to manipulate immune cells for clinical interventions.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Jennifer Menegatti
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Friedrich Grässer
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | | | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
17
|
Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, Jadhav A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma’ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen DT, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudose I, Ursu O, Vidovic D, Waller A, Westergaard D, Yang JJ, Zahoránszky-Köhalmi G. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 2018; 17:317-332. [PMID: 29472638 PMCID: PMC6339563 DOI: 10.1038/nrd.2018.14] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cristian G. Bologa
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shawn M. Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Anne Hersey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jayme Holmes
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anneli Karlson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Present addresses: SciBite Limited, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R. Leach
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Avi Ma’ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Subramani Mani
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Stephen L. Mathias
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Daniel Muthas
- Respiratory, Inflammation and Autoimmunity Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - John P. Overington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Medicines Discovery Catapult, Alderley Edge, UK
| | - George Papadatos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- GlaxoSmithKline, Stevenage, UK
| | - Jun Qin
- Baylor College of Medicine, Houston, TX, USA
| | | | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Larry A. Sklar
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Susumu Tomita
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ilinca Tudose
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Google Germany GmbH, München, Germany
| | - Oleg Ursu
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Dušica Vidovic
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy J. Yang
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gergely Zahoránszky-Köhalmi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- NIH-NCATS, Rockville, MD, USA
| |
Collapse
|
18
|
Demaurex N, Saul S. The role of STIM proteins in neutrophil functions. J Physiol 2018; 596:2699-2708. [PMID: 29441588 PMCID: PMC6046061 DOI: 10.1113/jp275639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) in innate and adaptive immune cells and participate in the Ca2+ signals that control the functions of neutrophils, the first line of host defence against bacterial and fungal infections. Loss-of-function experiments in animal and cellular models indicate that both STIM1 and STIM2 regulate neutrophil functions, but the complexity of the SOCE machinery and the versatility of neutrophils complicate the evaluation of the results. This review aims to summarize the latest progress in the field, with special attention to the details of the experimental designs. Future study design should aim to improve the standardization of experimental procedures and to provide a more holistic understanding of the role of STIM proteins in neutrophils function.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Stephanie Saul
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
19
|
LEFTY2 inhibits endometrial receptivity by downregulating Orai1 expression and store-operated Ca 2+ entry. J Mol Med (Berl) 2017; 96:173-182. [PMID: 29230527 PMCID: PMC5778154 DOI: 10.1007/s00109-017-1610-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
Abstract Early embryo development and endometrial differentiation are initially independent processes, and synchronization, imposed by a limited window of implantation, is critical for reproductive success. A putative negative regulator of endometrial receptivity is LEFTY2, a member of the transforming growth factor (TGF)-β family. LEFTY2 is highly expressed in decidualizing human endometrial stromal cells (HESCs) during the late luteal phase of the menstrual cycle, coinciding with the closure of the window of implantation. Here, we show that flushing of the uterine lumen in mice with recombinant LEFTY2 inhibits the expression of key receptivity genes, including Cox2, Bmp2, and Wnt4, and blocks embryo implantation. In Ishikawa cells, a human endometrial epithelial cell line, LEFTY2 downregulated the expression of calcium release-activated calcium channel protein 1, encoded by ORAI1, and inhibited store-operated Ca2+ entry (SOCE). Furthermore, LEFTY2 and the Orai1 blockers 2-APB, MRS-1845, as well as YM-58483, inhibited, whereas the Ca2+ ionophore, ionomycin, strongly upregulated COX2, BMP2 and WNT4 expression in decidualizing HESCs. These findings suggest that LEFTY2 closes the implantation window, at least in part, by downregulating Orai1, which in turn limits SOCE and antagonizes expression of Ca2+-sensitive receptivity genes. Key messages •Endometrial receptivity is negatively regulated by LEFTY2. •LEFTY2 inhibits the expression of key murine receptivity genes, including Cox2, Bmp2and Wnt4, and blocks embryo implantation. •LEFTY2 downregulates the expression of Orai1 and inhibits SOCE. •LEFTY2 and the Orai1 blockers 2-APB, MRS-1845, and YM-58483 inhibit COX2, BMP2, and WNT4 expression in endometrial cells. •Targeting LEFTY2 and Orai1 may represent a novel approach for treating unexplained infertility. Electronic supplementary material The online version of this article (10.1007/s00109-017-1610-9) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Li YB, Pei XY, Wang D, Chen CH, Cai MJ, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone upregulates calcium release-activated calcium channel modulator 1 expression to induce apoptosis in the midgut of Helicoverpa armigera. Cell Calcium 2017; 68:24-33. [PMID: 29129205 DOI: 10.1016/j.ceca.2017.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023]
Abstract
Animal steroid hormones stimulate extracellular Ca2+ influx into cells; however, the mechanism remains unclear. In this study, we determined that the Ca2+ influx induced by steroid hormone 20-hydroxyecdysone (20E) is mediated by the calcium release-activated calcium channel modulator 1 (CRACM1/Orai1). The Orai1 mRNA is highly expressed during midgut programmed cell death in the lepidopteran insect Helicoverpa armigera. 20E upregulated the expression of Orai1 in H. armigera larvae and in an epidermal cell line (HaEpi). Knockdown of Orai1 in HaEpi cells blocked 20E-induced Ca2+ influx, and the inhibitor of inositol 1, 4, 5-trisphosphate receptor (IP3R) Xestospongin (XeC) blocked 20E-induced Ca2+ influx, suggesting that 20E, via Orai1, induces stored-operated Ca2+ influx. Orai1 interacts with stromal interaction molecule 1(Stim1) to exert its function in 20E-induced Ca2+ influx. 20E promotes Orai1 aggregation through G-protein-coupled receptors, phospholipase C gamma 1, and Stim1. Knockdown of Orai1 in the HaEpi cell line repressed apoptosis and maintained autophagy under 20E regulation. Knockdown of Orai1 in larvae delayed pupation, repressed midgut apoptosis, maintained the midgut in an autophagic state, and repressed 20E-pathway gene expression. These results revealed that steroid hormone 20E, via Orai1, induces Ca2+ influx to promote the transition of midgut from autophagy to apoptosis.
Collapse
Affiliation(s)
- Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Di Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
21
|
Epigallocatechin-3-gallate (EGCG) up-regulates miR-15b expression thus attenuating store operated calcium entry (SOCE) into murine CD4 + T cells and human leukaemic T cell lymphoblasts. Oncotarget 2017; 8:89500-89514. [PMID: 29163766 PMCID: PMC5685687 DOI: 10.18632/oncotarget.20032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 02/05/2023] Open
Abstract
CD4+ T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4+ T cells triggers cytosolic Ca2+ release with subsequent store operated Ca2+ entry (SOCE), which is accomplished by the pore forming Ca2+ release activated Ca2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca2+ influx into murine CD4+ T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4+ T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 μM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.
Collapse
|
22
|
Abstract
The calcium signal is a powerful and multifaceted tool by which cells can achieve specific outcomes. Cellular machinery important in tumour progression is often driven or influenced by changes in calcium ions; in some cases this regulation occurs within spatially defined regions. Over the past decade there has been a deeper understanding of how calcium signalling is remodelled in some cancers and the consequences of calcium signalling on key events such as proliferation, invasion and sensitivity to cell death. Specific calcium signalling pathways have also now been identified as playing important roles in the establishment and maintenance of multidrug resistance and the tumour microenvironment.
Collapse
Affiliation(s)
- Gregory R Monteith
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Mater Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Natalia Prevarskaya
- Institut National de la Santé et de la Recherche Médicale U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le cancer, and Universite de Lille 1, Villeneuve d'Ascq, F-59650, France
| | - Sarah J Roberts-Thomson
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
23
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
24
|
Altered mitochondrial function, capacitative calcium entry and contractions in the aorta of hypertensive rats. J Hypertens 2017; 35:1594-1608. [PMID: 28403042 DOI: 10.1097/hjh.0000000000001360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE It has been suggested that Ca entry through store-operated Ca channels (SOCs) is regulated by a dynamic interplay between the endoplasmic reticulum Ca stores and the mitochondria. These relationships drive the activation and inactivation of SOCs, yet it remains unclear whether this regulation of SOCs by mitochondria is altered in the aorta of spontaneously hypertensive rats (SHRs). METHODS We performed a thorough study of the mitochondrial membrane potential, the ability of mitochondria to deal with cytosolic Ca, capacitative Ca entry (CCE), and stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator 1 (orai1) protein expression, as well as the contractile capacity of aortic rings, in normotensive Wistar Kyoto rats (WKYs) and SHRs. RESULTS Changes were observed in aortic tissue and cultured vascular smooth muscle cells isolated from SHRs relative to WKYs, including more depolarized mitochondria, stronger CCE upon the addition of Ca, larger cytosolic Ca transients (cytosolic Ca concentration) or aortic ring contraction elicited by endoplasmic reticulum depletion and a significant increase in STIM1 protein expression but not of orai1. CONCLUSION These results suggest that the impaired Ca buffering capacity of partially depolarized mitochondria dysregulates CCE, leading to overfilling of the endoplasmic reticulum Ca store through enhanced STIM1/orai1 interactions and an increase in aorta contractions in SHRs. Thus, understanding the implications of the alterations to STIM1/orai1, and their relationship to mitochondria, may aid drug development and therapeutic strategies to treat hypertension, as well as its long-term sequelae in poorly controlled patients.
Collapse
|
25
|
Guan Y, He M, Wu H. Differential mantle transcriptomics and characterization of growth-related genes in the diploid and triploid pearl oyster Pinctada fucata. Mar Genomics 2017; 33:31-38. [PMID: 28188115 DOI: 10.1016/j.margen.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
To explore the molecular mechanism of triploidy effect in the pearl oyster Pinctada fucata, two RNA-seq libraries were constructed from the mantle tissue of diploids and triploids by Roche-454 massive parallel pyrosequencing. The identification of differential expressed genes (DEGs) between diploid and triploid may reveal the molecular mechanism of triploidy effect. In this study, 230 down-regulated and 259 up-regulated DEGs were obtained by comparison between diploid and triploid libraries. The gene ontology and KEGG pathway analysis revealed more functional activation in triploids and it may due to the duplicated gene expression in transcriptional level during whole genome duplication (WGD). To confirm the sequencing data, a set of 11 up-regulated genes related to growth and development control and regulation were analyzed by RT-qPCR in independent experiment. According to the validation and annotation of these genes, it is hypothesized that the set of up-regulated expressed genes had the correlated expression pattern involved in shell building or other interactive probable functions during triploidization. The up- regulation of growth-related genes may support the classic hypotheses of 'energy redistribution' from early research. The results provide valuable resources to understand the molecular mechanism of triploidy effect in both shell building and producing high-quality seawater pearls.
Collapse
Affiliation(s)
- Yunyan Guan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, Guangzhou 510301, China.
| | - Maoxian He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, Guangzhou 510301, China
| | - Houbo Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, Guangzhou 510301, China.
| |
Collapse
|
26
|
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca 2+ Entry: Impact on Ca 2+ Signaling and Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:159-188. [PMID: 28900914 DOI: 10.1007/978-3-319-57732-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), which are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. While TRPC1 was associated with SOCE and regulation of function in several cell types, none of the TRPC members displayed I CRAC, the store-operated current identified in lymphocytes and mast cells. Intensive search finally led to the identification of Orai1 and STIM1 as the primary components of the CRAC channel. Orai1 was established as the pore-forming channel protein and STIM1 as the ER-Ca2+ sensor protein involved in activation of Orai1. STIM1 also activates TRPC1 via a distinct domain in its C-terminus. However, TRPC1 function depends on Orai1-mediated Ca2+ entry, which triggers recruitment of TRPC1 into the plasma membrane where it is activated by STIM1. TRPC1 and Orai1 form distinct store-operated Ca2+ channels that regulate specific cellular functions. It is now clearly established that regulation of TRPC1 trafficking can change plasma membrane levels of the channel, the phenotype of the store-operated Ca2+ current, as well as pattern of SOCE-mediated [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1. This review will highlight current concepts of the activation and regulation of TRPC1 channels and its impact on cell function.
Collapse
|
27
|
Sun F, Cao Y, Yu C, Wei X, Yao J. 1,25-Dihydroxyvitamin D3 modulates calcium transport in goat mammary epithelial cells in a dose- and energy-dependent manner. J Anim Sci Biotechnol 2016; 7:41. [PMID: 27471592 PMCID: PMC4964070 DOI: 10.1186/s40104-016-0101-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background Calcium is a vital mineral and an indispensable component of milk for ruminants. The regulation of transcellular calcium transport by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3, the active form of vitamin D) has been confirmed in humans and rodents, and regulators, including vitamin D receptor (VDR), calcium binding protein D9k (calbindin-D9k), plasma membrane Ca2+-ATPase 1b (PMCA1b), PMAC2b and Orai1, are involved in this process. However, it is still unclear whether 1,25-(OH)2D3 could stimulate calcium transport in the ruminant mammary gland. The present trials were conducted to study the effect of 1,25-(OH)2D3 supplementation and energy availability on the expression of genes and proteins related to calcium secretion in goat mammary epithelial cells. Methods An in vitro culture method for goat secreting mammary epithelial cells was successfully established. The cells were treated with different doses of 1,25-(OH)2D3 (0, 0.1, 1.0, 10.0 and 100.0 nmol/L) for calcium transport research, followed by a 3-bromopyruvate (3-BrPA, an inhibitor of glucose metabolism) treatment to determine its dependence on glucose availability. Cell proliferation ratios, glucose consumption and enzyme activities were measured with commercial kits, and real-time quantitative polymerase chain reaction (RT-qPCR), and western blots were used to determine the expression of genes and proteins associated with mammary calcium transport in dairy goats, respectively. Results 1,25-(OH)2D3 promoted cell proliferation and the expression of genes involved in calcium transport in a dose-dependent manner when the concentration did not exceed 10.0 nmol/L. In addition, 100.0 nmol/L 1,25-(OH)2D3 inhibited cell proliferation and the expression of associated genes compared with the 10.0 nmol/L treatment. The inhibition of hexokinase 2 (HK2), a rate-limiting enzyme in glucose metabolism, decreased the expression of PMCA1b and PMCA2b at the mRNA and protein levels as well as the transcription of Orai1, indicating that glucose availability was required for goat mammary calcium transport. The optimal concentration of 1,25-(OH)2D3 that facilitated calcium transport in this study was 10.0 nmol/L. Conclusions Supplementation with 1,25-(OH)2D3 influenced cell proliferation and regulated the expression of calcium transport modulators in a dose- and energy-dependent manner, thereby highlighting the role of 1,25-(OH)2D3 as an efficacious regulatory agent that produces calcium-enriched milk in ruminants when a suitable energy status was guaranteed.
Collapse
Affiliation(s)
- Feifei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Chao Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Xiaoshi Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi Peoples Republic of China
| |
Collapse
|