1
|
Short B. A mutation that prevents myosin from overcoming its inhibitions. J Gen Physiol 2024; 156:e202413594. [PMID: 38727632 PMCID: PMC11090048 DOI: 10.1085/jgp.202413594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024] Open
Abstract
JGP study (Duno-Miranda et al. https://doi.org/10.1085/jgp.202313522) shows that a mutation linked to dilated cardiomyopathy stabilizes β-cardiac myosin in its autoinhibited, super-relaxed state.
Collapse
Affiliation(s)
- Ben Short
- Science Writer, Rockefeller University Press, New York, NY, USA
| |
Collapse
|
2
|
Duno-Miranda S, Nelson SR, Rasicci DV, Bodt SM, Cirilo JA, Vang D, Sivaramakrishnan S, Yengo CM, Warshaw DM. Tail length and E525K dilated cardiomyopathy mutant alter human β-cardiac myosin super-relaxed state. J Gen Physiol 2024; 156:e202313522. [PMID: 38709176 PMCID: PMC11074782 DOI: 10.1085/jgp.202313522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human β-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.
Collapse
Affiliation(s)
- Sebastian Duno-Miranda
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Skylar M.L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Joseph A. Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
Palakshappa JA, Batt JAE, Bodine SC, Connolly BA, Doles J, Falvey JR, Ferrante LE, Files DC, Harhay MO, Harrell K, Hippensteel JA, Iwashyna TJ, Jackson JC, Lane-Fall MB, Monje M, Moss M, Needham DM, Semler MW, Lahiri S, Larsson L, Sevin CM, Sharshar T, Singer B, Stevens T, Taylor SP, Gomez CR, Zhou G, Girard TD, Hough CL. Tackling Brain and Muscle Dysfunction in Acute Respiratory Distress Syndrome Survivors: NHLBI Workshop Report. Am J Respir Crit Care Med 2024; 209:1304-1313. [PMID: 38477657 PMCID: PMC11146564 DOI: 10.1164/rccm.202311-2130ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with long-term impairments in brain and muscle function that significantly impact the quality of life of those who survive the acute illness. The mechanisms underlying these impairments are not yet well understood, and evidence-based interventions to minimize the burden on patients remain unproved. The NHLBI of the NIH assembled a workshop in April 2023 to review the state of the science regarding ARDS-associated brain and muscle dysfunction, to identify gaps in current knowledge, and to determine priorities for future investigation. The workshop included presentations by scientific leaders across the translational science spectrum and was open to the public as well as the scientific community. This report describes the themes discussed at the workshop as well as recommendations to advance the field toward the goal of improving the health and well-being of ARDS survivors.
Collapse
Affiliation(s)
| | - Jane A. E. Batt
- University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Sue C. Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Bronwen A. Connolly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Jason Doles
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason R. Falvey
- University of Maryland School of Medicine, Baltimore, Maryland
| | | | - D. Clark Files
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael O. Harhay
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Meghan B. Lane-Fall
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michelle Monje
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Marc Moss
- University of Colorado School of Medicine, Aurora, Colorado
| | - Dale M. Needham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Shouri Lahiri
- Cedars Sinai Medical Center, Los Angeles, California
| | - Lars Larsson
- Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
- Department of Physiology & Pharmacology, Karolinska Institute and Viron Molecular Medicine Institute, Boston, Massachusetts
| | - Carla M. Sevin
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatry and Neurosciences, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, University Paris Cité, Paris, France
| | | | | | | | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Timothy D. Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
4
|
Hawke TJ, Zaucke F. Exploring frontiers in musculoskeletal biology and bioengineering. Am J Physiol Cell Physiol 2024; 326:C659-C660. [PMID: 38252506 DOI: 10.1152/ajpcell.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Duno-Miranda S, Nelson SR, Rasicci DV, Bodt SL, Cirilo JA, Vang D, Sivaramakrishnan S, Yengo CM, Warshaw DM. Tail Length and E525K Dilated Cardiomyopathy Mutant Alter Human β-Cardiac Myosin Super-Relaxed State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570656. [PMID: 38105932 PMCID: PMC10723396 DOI: 10.1101/2023.12.07.570656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dilated cardiomyopathy (DCM) is characterized by impaired cardiac function due to myocardial hypo-contractility and is associated with point mutations in β-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super relaxed" state (SRX), which is further stabilized by a structural state known as the "Interacting Heads Motif" (IHM). Therefore, hypo-contractility of DCM myocardium may result from: 1) reduced function of individual myosin, and/or; 2) decreased myosin availability due to increased IHM/SRX stabilization. To define the molecular impact of an established DCM myosin mutation, E525K, we characterized the biochemical and mechanical activity of wild-type (WT) and E525K human β-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. Single-headed (S1) and a short-tailed, double-headed (2HEP) myosin constructs exhibited low (~10%) IHM/SRX content, actin-activated ATPase activity of ~5s-1 and fast velocities in unloaded motility assays (~2000nm/s). Double-headed, longer-tailed (15HEP, 25HEP) constructs exhibited higher IHM/SRX content (~90%), and reduced actomyosin ATPase (<1s-1) and velocity (~800nm/s). A simple analytical model suggests that reduced velocities may be attributed to IHM/SRXdependent sequestration of myosin heads. Interestingly, the E525K 15HEP and 25HEP mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength. However, at higher ionic strength, the E525K mutation stabilized the IHM/SRX state. Therefore, the E525K-associated DCM human cardiac hypo-contractility may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability.
Collapse
Affiliation(s)
- Sebastian Duno-Miranda
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - David V. Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Skylar L.M. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Joseph A. Cirilo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Nyström A, Schaefer L. An American Journal of Physiology-Cell Physiology for the present and the future. Am J Physiol Cell Physiol 2023; 325:C1155-C1157. [PMID: 37746699 DOI: 10.1152/ajpcell.00455.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|