1
|
Zhao H, Tian X, Wu B, Lu Y, Du J, Peng S, Xiao Y. Neurotensin contributes to cholestatic liver disease potentially modulating matrix metalloprotease-7. Int J Biochem Cell Biol 2024; 170:106567. [PMID: 38522506 DOI: 10.1016/j.biocel.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The diagnosis and treatment of biliary atresia pose challenges due to the absence of reliable biomarkers and limited understanding of its etiology. The plasma and liver of patients with biliary atresia exhibit elevated levels of neurotensin. To investigate the specific role of neurotensin in the progression of biliary atresia, the patient's liver pathological section was employed. Biliary organoids, cultured biliary cells, and a mouse model were employed to elucidate both the potential diagnostic significance of neurotensin and its underlying mechanistic pathway. In patients' blood, the levels of neurotensin were positively correlated with matrix metalloprotease-7, interleukin-8, and liver function enzymes. Neurotensin and neurotensin receptors were mainly expressed in the intrahepatic biliary cells and were stimulated by bile acids. Neurotensin suppressed the growth and increased expression of matrix metalloprotease-7 in biliary organoids. Neurotensin inhibited mitochondrial respiration, oxidative phosphorylation, and attenuated the activation of calmodulin-dependent kinase kinase 2-adenosine monophosphate-activated protein kinase (CaMKK2-AMPK) signaling in cultured biliary cells. The stimulation of neurotensin in mice and cultured cholangiocytes resulted in the upregulation of matrix metalloprotease-7 expression through binding to its receptors, namely neurotensin receptors 1/3, thereby attenuating the activation of the CaMKK2-AMPK pathway. In conclusion, these findings revealed the changes of neurotensin in patients with cholestatic liver disease and its mechanism in the progression of the disease, providing a new understanding of the complex mechanism of hepatobiliary injury in children with biliary atresia.
Collapse
Affiliation(s)
- Hongxia Zhao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
2
|
Zhu Y, Wang S, Niu P, Chen H, Zhou J, Jiang L, Li D, Shi D. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells. PeerJ 2023; 11:e15498. [PMID: 37304865 PMCID: PMC10257395 DOI: 10.7717/peerj.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
Collapse
|
3
|
New Insights in the Control of Fat Homeostasis: The Role of Neurotensin. Int J Mol Sci 2022; 23:ijms23042209. [PMID: 35216326 PMCID: PMC8876516 DOI: 10.3390/ijms23042209] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Neurotensin (NT) is a small peptide with pleiotropic functions, exerting its primary actions by controlling food intake and energy balance. The first evidence of an involvement of NT in metabolism came from studies on the central nervous system and brain circuits, where NT acts as a neurotransmitter, producing different effects in relation to the specific region involved. Moreover, newer interesting chapters on peripheral NT and metabolism have emerged since the first studies on the NT-mediated regulation of gut lipid absorption and fat homeostasis. Intriguingly, NT enhances fat absorption from the gut lumen in the presence of food with a high fat content, and this action may explain the strong association between high circulating levels of pro-NT, the NT stable precursor, and the increased incidence of metabolic disorders, cardiovascular diseases, and cancer observed in large population studies. This review aims to provide a synthetic overview of the main regulatory effects of NT on several biological pathways, particularly those involving energy balance, and will focus on new evidence on the role of NT in controlling fat homeostasis, thus influencing the risk of unfavorable cardio–metabolic outcomes and overall mortality in humans.
Collapse
|
4
|
Rock S, Li X, Song J, Townsend CM, Weiss HL, Rychahou P, Gao T, Li J, Evers BM. Kinase suppressor of Ras 1 and Exo70 promote fatty acid-stimulated neurotensin secretion through ERK1/2 signaling. PLoS One 2019; 14:e0211134. [PMID: 30917119 PMCID: PMC6436710 DOI: 10.1371/journal.pone.0211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Neurotensin is a peptide hormone released from enteroendocrine cells in the small intestine in response to fat ingestion. Although the mechanisms regulating neurotensin secretion are still incompletely understood, our recent findings implicate a role for extracellular signal-regulated kinase 1 and 2 as positive regulators of free fatty acid-stimulated neurotensin secretion. Previous studies have shown that kinase suppressor of Ras 1 acts as a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase 1 and 2 kinase cascade and regulates intensity and duration of extracellular signal-regulated kinase 1 and 2 signaling. Here, we demonstrate that inhibition of kinase suppressor of Ras 1 attenuates neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling in human endocrine cells. Conversely, we show that overexpression of kinase suppressor of Ras 1 enhances neurotensin secretion and extracellular signal-regulated kinase 1 and 2 signaling. We also show that inhibition of extracellular signal-regulated kinase 2 and exocyst complex component 70, a substrate of extracellular signal-regulated kinase 2 and mediator of secretory vesicle exocytosis, potently inhibits basal and docosahexaenoic acid-stimulated neurotensin secretion, whereas overexpression of exocyst complex component 70 enhances basal and docosahexaenoic acid-stimulated neurotensin secretion. Together, our findings demonstrate a role for kinase suppressor of Ras 1 as a positive regulator of neurotensin secretion from human endocrine cells and indicate that this effect is mediated by the extracellular signal-regulated kinase 1 and 2 signaling pathway. Moreover, we reveal a novel role for exocyst complex component 70 in regulation of neurotensin vesicle exocytosis through its interaction with the extracellular signal-regulated kinase 1 and 2 signaling pathway.
Collapse
Affiliation(s)
- Stephanie Rock
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xian Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jun Song
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Courtney M. Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi L. Weiss
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tianyan Gao
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Li
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - B. Mark Evers
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
5
|
Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, Weiss T, Townsend CM, Gao T, Evers BM. FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 2018; 159:2939-2952. [PMID: 29796668 PMCID: PMC6486825 DOI: 10.1210/en.2018-00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a 13 amino-acid peptide, is predominantly released from enteroendocrine cells of the small bowel in response to fat ingestion. Free fatty acid receptors (FFARs) FFAR1 and FFAR4 regulate secretion of gut hormones and insulin. Here, we show that docosahexaenoic acid, a long-chain fatty acid, has the most dramatic effect on NT release. FFAR1 agonists slightly stimulate and FFAR4 agonists dramatically stimulate and amplify NT secretion. Double knockdown of FFAR1 and FFAR4 decreases NT release, whereas overexpression of FFAR4, but not FFAR1, increases NT release. Administration of cpdA, an FFAR4 agonist, but not TAK-875, a selective FFAR1 agonist, increases plasma NT levels and further increases olive oil-stimulated plasma NT levels. Inhibition of MAPK kinase (MEK)/ERK1/2 decreased fatty acid-stimulated NT release but increased AMP-activated protein kinase (AMPK) phosphorylation. In contrast, inhibition of AMPK further increased NT secretion and ERK1/2 phosphorylation mediated by FFAR1 or FFAR4. Our results indicate that FFAR4 plays a more critical role than FFAR1 in mediation of fat-regulated NT release and in inhibitory crosstalk between MEK/ERK1/2 and AMPK in the control of NT release downstream of FFAR1 and FFAR4.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xian Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Stephanie B Rock
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heather F Sinner
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Todd Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Courtney M Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Correspondence: B. Mark Evers, MD, University of Kentucky, Markey Cancer Center, CC140 Roach Building, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
6
|
Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget 2016; 6:26960-70. [PMID: 26298774 PMCID: PMC4694966 DOI: 10.18632/oncotarget.4745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/15/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotensin (NTS), localized predominantly to the small bowel, stimulates the growth of a variety of cancers, including neuroendocrine tumors (NETs), mainly through its interaction with the high-affinity NTS receptor 1 (NTSR1). Here, we observed increased expression of NTSR1 in almost all tested clinical NET samples, but not in normal tissues. Through RT-PCR analysis, we found that the expression of NTSR1 and NTSR2 was either variable (NTSR1) or absent (NTSR2) in human NET cell lines. In contrast, NTSR3 and NTS were expressed in all NET cells. Treatment with 5-aza-2′-deoxycytidine, a demethylating agent, increased levels of NTSR1 and NTSR2 suggesting that DNA methylation contributes to NTSR1/2 expression patterns, which was confirmed by methylation analyses. In addition, we found that knockdown of NTSR1 decreased proliferation, expression levels of growth-related proteins, and anchorage-independent growth of BON human carcinoid cells. Moreover, stable silencing of NTSR1 suppressed BON cell growth, adhesion, migration and invasion. Our results show that high expression of NTSR1 is found in clinical NETs and that promoter methylation is an important mechanism controlling the differential expression of NTSR1 and silencing of NTSR2 in NET cells. Furthermore, knockdown of NTSR1 in BON cells suppressed oncogenic functions suggesting that NTSR1 contributes to NET tumorigenesis.
Collapse
|
7
|
Li J, Song J, Zaytseva YY, Liu Y, Rychahou P, Jiang K, Starr ME, Kim JT, Harris JW, Yiannikouris FB, Katz WS, Nilsson PM, Orho-Melander M, Chen J, Zhu H, Fahrenholz T, Higashi RM, Gao T, Morris AJ, Cassis LA, Fan TWM, Weiss HL, Dobner PR, Melander O, Jia J, Evers BM. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 2016; 533:411-5. [PMID: 27193687 PMCID: PMC5484414 DOI: 10.1038/nature17662] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Piotr Rychahou
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Kai Jiang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Marlene E Starr
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Ji Tae Kim
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jennifer W Harris
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Frederique B Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Wendy S Katz
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, 221 00 Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, 205 02 Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences, Lund University, Malmö, 221 00 Lund, Sweden
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Timothy Fahrenholz
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Richard M Higashi
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky and Lexington Veterans Affairs Medical Center, Lexington, Kentucky 40536, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Teresa W-M Fan
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Paul R Dobner
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, 221 00 Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, 205 02 Malmö, Sweden
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
8
|
Li J, Song J, Weiss HL, Weiss T, Townsend CM, Evers BM. Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells. Mol Endocrinol 2015; 30:26-36. [PMID: 26528831 DOI: 10.1210/me.2015-1094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a critical fuel-sensing enzyme, regulates the metabolic effects of various hormones. Neurotensin (NT) is a 13-amino acid peptide predominantly localized in enteroendocrine cells of the small bowel and released by fat ingestion. Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with an increased risk of diabetes, cardiovascular disease, and mortality; however, the mechanisms regulating NT release are not fully defined. We previously reported that inhibition of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) increases NT secretion and gene expression through activation of the MEK/ERK pathway. Here, we show that activation of AMPK increases NT secretion from endocrine cell lines (BON and QGP-1) and isolated mouse crypt cells enriched for NT-positive cells. In addition, plasma levels of NT increase in mice treated with 5-aminoimidazole-4-carboxamide riboside, a pharmacologic AMPK activator. Small interfering RNA-mediated knockdown of AMPKα decrease, whereas overexpression of the subunit significantly enhances, NT secretion from BON cells treated with AMPK activators or oleic acid. Similarly, small interfering RNA knockdown of the upstream AMPK kinases, liver kinase B1 and Ca(2+) calmodulin-dependent protein kinase kinase 2, also attenuate NT release and AMPK phosphorylation. Moreover, AMPK activation increases NT secretion through inhibition of mTORC1 signaling. Together, our findings show that AMPK activation enhances NT release through inhibition of mTORC1 signaling, thus demonstrating an important cross talk regulation for NT secretion.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Jun Song
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Heidi L Weiss
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Todd Weiss
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - Courtney M Townsend
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| | - B Mark Evers
- Department of Surgery (J.L., J.S., B.M.E.) and Lucille P. Markey Cancer Center (J.L., J.S., H.L.W., T.W., B.M.E.), University of Kentucky, Lexington, Kentucky 40536; and Department of Surgery (C.M.T.), The University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
9
|
Moschetta M, Reale A, Marasco C, Vacca A, Carratù MR. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 2015; 171:3801-13. [PMID: 24780124 DOI: 10.1111/bph.12749] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/29/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays an important role in the regulation of protein translation, cell growth and metabolism. The mTOR protein forms two distinct multi-subunit complexes: mTORC1 and mTORC2. The mTORC1 complex is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals; and essential signalling pathways, such as PI3K and MAPK, in order to control cell growth, proliferation and survival. mTORC1 also activates S6K1 and 4EBP1, which are involved in mRNA translation. The mTORC2 complex is resistant to rapamycin inhibitory activity and is generally insensitive to nutrient- and energy-dependent signals. It activates PKC-α and Akt and regulates the actin cytoskeleton. Deregulation of the mTOR-signalling pathway (PI3K amplification/mutation, PTEN loss of function, Akt overexpression, and S6K1, 4EBP1 and eIF4E overexpression) is common in cancer, and alterations in components of the mTOR pathway have a major role in tumour progression. Therefore, mTOR is an appealing therapeutic target in many tumours. Here we summarize the upstream regulators and downstream effectors of the mTORC1 and mTORC2 pathways, the role of mTOR in cancer, and the potential therapeutic values and issues related to the novel agents targeting the mTOR-signalling pathway.
Collapse
Affiliation(s)
- M Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Section of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School 'Aldo Moro', Bari, Italy
| | | | | | | | | |
Collapse
|
10
|
Kim JT, Liu C, Zaytseva YY, Weiss HL, Townsend CM, Evers BM. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells. Int J Cancer 2015; 136:1475-81. [PMID: 25098665 PMCID: PMC4289421 DOI: 10.1002/ijc.29123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 02/06/2023]
Abstract
Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | | | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | | | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
| |
Collapse
|
11
|
Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch DK, Slater EP, Oswald F, Walther P, Seufferlein T, von Wichert G. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med 2015; 19:948-59. [PMID: 25754106 PMCID: PMC4420598 DOI: 10.1111/jcmm.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/15/2014] [Indexed: 01/18/2023] Open
Abstract
Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP-ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP-1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin-like growth factor 1 (IGF-1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF-1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP-1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF-1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells.
Collapse
|
12
|
Rheb Inhibits Protein Synthesis by Activating the PERK-eIF2α Signaling Cascade. Cell Rep 2015; 10:684-693. [PMID: 25660019 DOI: 10.1016/j.celrep.2015.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 12/04/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022] Open
Abstract
Rheb, a ubiquitous small GTPase, is well known to bind and activate mTOR, which augments protein synthesis. Inhibition of protein synthesis is also physiologically regulated. Thus, with cell stress, the unfolded protein response system leads to phosphorylation of the initiation factor eIF2α and arrest of protein synthesis. We now demonstrate a major role for Rheb in inhibiting protein synthesis by enhancing the phosphorylation of eIF2α by protein kinase-like ER kinase (PERK). Interplay between the stimulatory and inhibitory roles of Rheb may enable cells to modulate protein synthesis in response to varying environmental stresses.
Collapse
|
13
|
Moreno E, Doughty-Shenton D, Plano D, Font M, Encío I, Palop JA, Sanmartín C. A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells. Eur J Pharm Sci 2014; 63:87-95. [DOI: 10.1016/j.ejps.2014.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/12/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
|
14
|
Mukai R, Ohshima T. HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 2014; 33:2317-28. [PMID: 23708656 DOI: 10.1038/onc.2013.181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) infection causes adult T-cell leukemia (ATL). Modulation of the transcriptional control of cellular genes by HTLV-1 is thought to be associated with the development of ATL. The viral protein HTLV-1 basic leucine-zipper factor (HBZ) has been shown to dysregulate the activity of cellular transcription factors. Here, we demonstrate that HBZ is exported from the nucleus to the cytoplasm, where it activates the mammalian target of rapamycin (mTOR) signaling pathway through an association with growth arrest and DNA damage gene 34 (GADD34). The N-terminal region of HBZ interacts with the C-terminal region of GADD34. HBZ contains a functional nuclear export signal (NES) sequence within its N-terminal region and it is exported from the nucleus via the CRM1-dependent pathway. Nuclear export of HBZ is essential for its interaction with GADD34 and increased phosphorylation of S6 kinase, which is an established downstream target of the mTOR pathway. Starvation-induced autophagy is significantly suppressed by the overexpression of HBZ. These findings indicate that HBZ is actively exported to the cytoplasm, where it dysregulates the function of cellular factors.
Collapse
Affiliation(s)
- R Mukai
- Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - T Ohshima
- 1] Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan [2] Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
15
|
Targeting the mTOR Signaling Network for Alzheimer’s Disease Therapy. Mol Neurobiol 2013; 49:120-35. [DOI: 10.1007/s12035-013-8505-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
|
16
|
Xu M, Tao G, Kang M, Gao Y, Zhu H, Gong W, Wang M, Wu D, Zhang Z, Zhao Q. A polymorphism (rs2295080) in mTOR promoter region and its association with gastric cancer in a Chinese population. PLoS One 2013; 8:e60080. [PMID: 23555892 PMCID: PMC3612103 DOI: 10.1371/journal.pone.0060080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/21/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND As an imperative part of PI3K/Akt/mTOR pathway, mammalian target of rapamycin (mTOR) has been demonstrated to increase in gastric cancer cells and tumors. Our research explored the relationship between single nucleotide polymorphism (SNP) rs2295080 in mTOR promoter region and the risk of gastric cancer (GC). METHODS Seven hundred and fifty-three (753) gastric adenocarcinoma patients and 854 matched healthy subjects were recruited in the cancer association study and 60 tissues were used to test the expression of mTOR. Unconditional logistic regression was selected to evaluate the association between the rs2295080 T>G polymorphism and GC risk. We then examined the functionality of this promoter genetic variant by luciferase assay and EMSA. RESULTS Individuals with G allele had a 23% decreased risk of GC, comparing with those carrying T allele (adjusted OR = 0.77, 95% CI = 0.65-0.92). This protective effect of G allele stood out better in male group. Meanwhile, GC patients carrying TG/GG genotype also displayed a decreased mRNA level of mTOR (P = 0.004). In luciferase assay, T allele tended to enhance the transcriptional activity of mTOR with an approximate 0.5-fold over G allele. Furthermore, EMSA tests explained that different alleles of rs2295080 displayed different affinities to some transcriptional factor. CONCLUSION The mTOR promoter polymorphism rs2295080 was significantly associated with GC risk. This SNP, which effectively influenced the expression of mTOR, may be a new biomarker of early diagnosis of gastric cancer and a suitable indicator of utilizing mTOR inhibitor for treatment of GC.
Collapse
Affiliation(s)
- Ming Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People’s Hospital Affiliated to Nanjing Medical University, Huai-an, China
| | - Meiyun Kang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Gao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haixia Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Core Laboratory of Nantong Tumor Hospital, Nantong, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| |
Collapse
|
17
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou Y, Wang Q, Guo Z, Weiss HL, Evers BM. Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells. Mol Biol Cell 2012; 23:2963-72. [PMID: 22696685 PMCID: PMC3408422 DOI: 10.1091/mbc.e12-01-0037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our results demonstrate that nuclear factor of activated T-cell 3 (NFATc3) contributes to the regulation of the mammalian target of rapamycin (mTOR) repressor regulated in development and DNA damage response 1 (REDD1) and mTOR downstream-targeted c-Myc expression. Furthermore, our study demonstrates a novel role for the NFATc3/REDD1/tuberous sclerosis complex 2 axis in the regulation of goblet cell differentiation. The nuclear factor of activated T-cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation. We identified REDD1, a negative regulator of mammalian target of rapamycin (mTOR) through the tuberous sclerosis complex (TSC1/2 complex), as a new molecular target of NFATc3. We show that treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus ionophore A23187 (Io), which induces NFAT activation, increased REDD1 mRNA and protein expression and inhibited mTOR signaling; pretreatment with the calcineurin inhibitor cyclosporin A (CsA), an antagonist of NFAT signaling, decreased REDD1 induction and mTOR inhibition. Knockdown of NFATc3, not NFATc1, NFATc2, or NFATc4, attenuated PMA/Io-induced REDD1 expression. Treatment with PMA/Io increased REDD1 promoter activity and increased NFATc3 binding to the REDD1 promoter. Overexpression of NFATc3 increased REDD1 mRNA and protein expression and increased PMA/Io-mediated REDD1 promoter activity. Treatment with PMA/Io increased expression of the goblet cell differentiation marker MUC2; these changes were attenuated by pretreatment with CsA or knockdown of REDD1 or NFATc3. Overexpression of NFATc3 increased, while knockdown of TSC2 decreased, MUC2 expression. We provide evidence showing NFATc3 inhibits mTOR via induction of REDD1. Our results suggest a role for the NFATc3/REDD1/TSC2 axis in the regulation of intestinal cell differentiation.
Collapse
Affiliation(s)
- Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0293, USA
| | | | | | | | | |
Collapse
|
19
|
Zaytseva YY, Valentino JD, Gulhati P, Mark Evers B. mTOR inhibitors in cancer therapy. Cancer Lett 2012; 319:1-7. [DOI: 10.1016/j.canlet.2012.01.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023]
|
20
|
Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 2012; 3:295-306. [PMID: 22585903 PMCID: PMC3649461 DOI: 10.3945/an.112.001891] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR). The AAR is composed of a collection of signal transduction pathways that terminate in specific transcriptional programs designed to catalyze adaptation to the nutrient stress or, ultimately, undergo apoptosis. Independently of the AAR, endoplasmic reticulum stress activates 3 signaling pathways, collectively referred to as the unfolded protein response. The transcription factor activating transcription factor 4 is one of the terminal transcriptional mediators for both the AAR and the unfolded protein response, leading to a significant degree of overlap with regard to the target genes for these stress pathways. Over the past 5 y, research has revealed that the basic leucine zipper superfamily of transcription factors plays the central role in the AAR. Formation of both homo- and heterodimers among the activating transcription factor, CCAAT enhancer-binding protein, and FOS/JUN families of basic leucine zipper proteins forms the nucleus of a highly integrated transcription factor network that determines the initiation, magnitude, and duration of the cellular response to dietary protein or AA limitation.
Collapse
|
21
|
Fu L, Balasubramanian M, Shan J, Dudenhausen EE, Kilberg MS. Auto-activation of c-JUN gene by amino acid deprivation of hepatocellular carcinoma cells reveals a novel c-JUN-mediated signaling pathway. J Biol Chem 2011; 286:36724-38. [PMID: 21862593 DOI: 10.1074/jbc.m111.277673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells respond to protein or amino acid (AA) limitation by activating a number of signaling pathways, collectively referred to as the AA response (AAR), that modulate a range of cellular functions, including transcriptional induction of target genes. This study demonstrates that in hepatocellular carcinoma cells, expression of c-JUN, JUN-B, c-FOS, and FOS-B was induced by the AAR, whereas JUN-D, FRA-1, and FRA-2 were not. Of the four activated FOS/JUN members, c-JUN made the largest contribution to the induction of several known AAR target genes. For several human liver, prostate, and ovarian cell lines, the AAR-induced increase in c-JUN expression was greater in transformed cells compared with nontransformed counterparts, an effect independent of cell growth rate. Thus far, the best characterized AA-responsive genes are all transcriptionally activated by ATF4, but the AAR-dependent induction of c-JUN transcription was ATF4-independent. The increased expression of c-JUN was dependent on ATF2 and on activation of the MEK-ERK and JNK arms of the MAPK signaling pathways. Formation of c-JUN-ATF2-activated heterodimers was increased after AA limitation, and c-JUN or ATF2 knockdown suppressed the induction of c-JUN and other AAR target genes. AA deprivation triggers a feed-forward process that involves phosphorylation of existing c-JUN protein by JNK and subsequent auto-activation of the c-JUN gene by recruitment of c-JUN and ATF2 to two AP-1 sites within the proximal promoter. The results document the novel observation that AP-1 sequences within the c-JUN gene can function as transcriptional amino acid-response elements.
Collapse
Affiliation(s)
- Lingchen Fu
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|