1
|
Klämbt V, Buerger F, Wang C, Naert T, Richter K, Nauth T, Weiss AC, Sieckmann T, Lai E, Connaughton DM, Seltzsam S, Mann N, Majmundar AJ, Wu CHW, Onuchic-Whitford AC, Shril S, Schneider S, Schierbaum L, Dai R, Bekheirnia MR, Joosten M, Shlomovitz O, Vivante A, Banne E, Mane S, Lifton RP, Kirschner KM, Kispert A, Rosenberger G, Fischer KD, Lienkamp SS, Zegers MM, Hildebrandt F. Genetic Variants in ARHGEF6 Cause Congenital Anomalies of the Kidneys and Urinary Tract in Humans, Mice, and Frogs. J Am Soc Nephrol 2023; 34:273-290. [PMID: 36414417 PMCID: PMC10103091 DOI: 10.1681/asn.2022010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.
Collapse
Affiliation(s)
- Verena Klämbt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Florian Buerger
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chunyan Wang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Thomas Naert
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Karin Richter
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Theresa Nauth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tobias Sieckmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany
| | - Ethan Lai
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dervla M. Connaughton
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steve Seltzsam
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Mann
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amar J. Majmundar
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chen-Han W. Wu
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Departments of Genetics and Urology, Case Western Reserve University School of Medicine and University Hospitals, Cleveland, Ohio
| | - Ana C. Onuchic-Whitford
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sophia Schneider
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luca Schierbaum
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rufeng Dai
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Omer Shlomovitz
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Asaf Vivante
- Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ehud Banne
- The Genetics Institute, Kaplan Medical Center—Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Karin M. Kirschner
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translatationale Physiologie, Berlin, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mirjam M.P. Zegers
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Ravichandran K, Zafar I, He Z, Doctor RB, Moldovan R, Mullick AE, Edelstein CL. An mTOR anti-sense oligonucleotide decreases polycystic kidney disease in mice with a targeted mutation in Pkd2. Hum Mol Genet 2014; 23:4919-31. [PMID: 24847003 DOI: 10.1093/hmg/ddu208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease in the USA. In human ADPKD studies, sirolimus, a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, had little therapeutic effect. While sirolimus robustly inhibits mTORC1, it has a minimal effect on mTOR complex 2 (mTORC2). Polycystic kidneys of Pkd2WS25/- mice, an orthologous model of human ADPKD caused by a mutation in the Pkd2 gene, had an early increase in pS6 (marker of mTORC1) and pAktSer(473) (marker of mTORC2). To investigate the effect of combined mTORC1 and 2 inhibition, Pkd2WS25/- mice were treated with an mTOR anti-sense oligonucleotide (ASO) that blocks mTOR expression thus inhibiting both mTORC1 and 2. The mTOR ASO resulted in a significant decrease in mTOR protein, pS6 and pAktSer(473). Pkd2WS25/- mice treated with the ASO had a normalization of kidney weights and kidney function and a marked decrease in cyst volume. The mTOR ASO resulted in a significant decrease in proliferation and apoptosis of tubular epithelial cells. To demonstrate the role of mTORC2 on cyst growth, Rictor, the functional component of mTORC2, was silenced in Madin-Darby canine kidney cell cysts grown in 3D cultures. Silencing Rictor significantly decreased cyst volume and expression of pAktSer(473). The decreased cyst size in the Rictor silenced cells was reversed by introduction of a constitutively active Akt1. In vitro, combined mTORC1 and 2 inhibition reduced cyst growth more than inhibition of mTORC1 or 2 alone. In conclusion, combined mTORC1 and 2 inhibition has therapeutic potential in ADPKD.
Collapse
Affiliation(s)
| | - Iram Zafar
- Division of Renal Diseases and Hypertension
| | - Zhibin He
- Division of Renal Diseases and Hypertension
| | | | - Radu Moldovan
- Advanced Light Microscopy Core Facility, University of Colorado at Denver, Aurora, CO, USA
| | | | | |
Collapse
|