1
|
Do HQ, Bassil CM, Andersen EI, Jansen M. Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter. PLoS One 2021; 16:e0253184. [PMID: 34793461 PMCID: PMC8601550 DOI: 10.1371/journal.pone.0253184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2021] [Indexed: 01/19/2023] Open
Abstract
The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Carla M. Bassil
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- The Clark Scholar Program, Texas Tech University, Lubbock, TX, United States of America
| | - Elizabeth I. Andersen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
2
|
Findley TO, Tenpenny JC, O'Byrne MR, Morrison AC, Hixson JE, Northrup H, Au KS. Mutations in folate transporter genes and risk for human myelomeningocele. Am J Med Genet A 2017; 173:2973-2984. [PMID: 28948692 DOI: 10.1002/ajmg.a.38472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms linking folate deficiency and neural tube defect (NTD) risk in offspring remain unclear. Folate transporters (SLC19A1, SLC46A1, SLC25A32, and FOLH1) and folate receptors (FOLR1, FOLR2, and FOLR3) are suggested to play essential roles in transporting folate from maternal intestinal lumen to the developing embryo. Loss of function variants in these genes may affect folate availability and contribute to NTD risk. This study examines whether variants within the folate transporter and receptor genes are associated with an increased risk for myelomeningocele (MM). Exons and their flanking intron sequences of 348 MM subjects were sequenced using the Sanger sequencing method and/or next generation sequencing to identify variants. Frequencies of alleles of single nucleotide polymorphisms (SNPs) in MM subjects were compared to those from ethnically matched reference populations to evaluate alleles' associated risk for MM. We identified eight novel variants in SLC19A1 and twelve novel variants in FOLR1, FOLR2, and FOLR3. Pathogenic variants include c.1265delG in SLC19A1 resulting in an early stop codon, four large insertion deletion variants in FOLR3, and a stop_gain variant in FOLR3. No new variants were identified in SLC46A1, SLC25A32, or FOLH1. In SLC19A1, c.80A>G (rs1051266) was not associated with our MM cohort; we did observe a variant allele G frequency of 61.7%, higher than previously reported in other NTD populations. In conclusion, we discovered novel loss of function variants in genes involved in folate transport in MM subjects. Our results support the growing evidence of associations between genes involved in folate transport and susceptibility to NTDs.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Joy C Tenpenny
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michelle R O'Byrne
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Shriners Hospital for Children, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
3
|
Date SS, Fiori MC, Altenberg GA, Jansen M. Expression in Sf9 insect cells, purification and functional reconstitution of the human proton-coupled folate transporter (PCFT, SLC46A1). PLoS One 2017; 12:e0177572. [PMID: 28493963 PMCID: PMC5426777 DOI: 10.1371/journal.pone.0177572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The proton-coupled folate transporter (PCFT) provides an essential uptake route for the vitamin folic acid (B9) in mammals. In addition, it is currently of high interest for targeting chemotherapeutic agents to tumors due to the increased folic acid requirement of rapidly dividing tumor cells as well as the upregulated PCFT expression in several tumors. To understand its function, determination of its atomic structure and molecular mechanism of transport are essential goals that require large amounts of functional PCFT. Here, we present a high-level heterologous expression system for human PCFT using a recombinant baculovirus and Spodoptera frugiperda (Sf9) insect cells. We demonstrate folate transport functionality along the PCFT expression, isolation, and purification process. Importantly, purified PCFT transports folic acid after reconstitution. We thus succeeded in overcoming heterologous expression as a major bottleneck of PCFT research. The availability of an overexpression system for human PCFT provides the basis for future biochemical, biophysical and structural studies.
Collapse
Affiliation(s)
- Swapneeta S. Date
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Mariana C. Fiori
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Guillermo A. Altenberg
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhao R, Aluri S, Goldman ID. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption. Mol Aspects Med 2016; 53:57-72. [PMID: 27664775 DOI: 10.1016/j.mam.2016.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023]
Abstract
The proton-coupled folate transporter (PCFT-SLC46A1) is the mechanism by which folates are absorbed across the brush-border membrane of the small intestine. The transporter is also expressed in the choroid plexus and is required for transport of folates into the cerebrospinal fluid. Loss of PCFT function, as occurs in the autosomal recessive disorder "hereditary folate malabsorption" (HFM), results in a syndrome characterized by severe systemic and cerebral folate deficiency. Folate-receptor alpha (FRα) is expressed in the choroid plexus, and loss of function of this protein, as also occurs in an autosomal recessive disorder, results solely in "cerebral folate deficiency" (CFD), the designation for this disorder. This paper reviews the current understanding of the functional and structural properties and regulation of PCFT, an electrogenic proton symporter, and contrasts PCFT properties with those of the reduced folate carrier (RFC), an organic anion antiporter, that is the major route of folate transport to systemic tissues. The clinical characteristics of HFM and its treatment, based upon the thirty-seven known cases with the clinical syndrome, of which thirty have been verified by genotype, are presented. The ways in which PCFT and FRα might interact at the level of the choroid plexus such that each is required for folate transport from blood to cerebrospinal fluid are considered along with the different clinical presentations of HFM and CFD.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
5
|
Date SS, Chen CYC, Chen Y, Jansen M. Experimentally optimized threading structures of the proton-coupled folate transporter. FEBS Open Bio 2016; 6:216-30. [PMID: 27047750 PMCID: PMC4794783 DOI: 10.1002/2211-5463.12041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
The proton‐coupled folate transporter (PCFT, SLC46A1) transports folic acid across the plasma membrane, together with an excess of protons such that the net charge translocation is positive. We developed 3D structural models of PCFT threaded onto the X‐ray structures of major facilitator superfamily (MFS) members that were identified as close structural homologues. The model of PCFT threaded onto the glycerol‐3‐phosphate transporter (GlpT) structure is consistent with detailed accessibility studies in the absence of extracellular substrate and at pH 7.4 presented here, and additionally with a multitude of other mutagenesis and functional studies. Characteristic MFS structural features are preserved in this PCFT model, such as 12 transmembrane helices divided into two pseudosymmetric bundles, and a high density of positive charges on the periphery of the cytoplasmic site that allow interactions with negatively charged lipid head‐groups. Under the experimental conditions, PCFT predominantly samples the resting state, which in this case is inward‐open. Several positions lining the substrate cavity have been identified. Motif A, a helix‐turn‐helix motif that is a hallmark of MFS transporters between transmembrane segments II and III is oriented appropriately to interact with residues from transmembrane segments IV as well as XI upon conformational transition to the outward‐open state. A charge‐relay system between three charged residues as well as apposing glycines in two α‐helices, both contributed to by motif A, become engaged when PCFT is modeled on the outward‐open state of a putative proton‐driven transporter (YajR).
Collapse
Affiliation(s)
- Swapneeta S Date
- Department of Cell Physiology and Molecular Biophysics School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Cheng-Yen Charles Chen
- Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Medical Student Summer Research Program School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Yidong Chen
- Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Medical Student Summer Research Program School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA; Center for Membrane Protein Research School of Medicine Texas Tech University Health Sciences Center Lubbock TX USA
| |
Collapse
|
6
|
Zhao R, Najmi M, Fiser A, Goldman ID. Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking. J Biol Chem 2016; 291:8162-72. [PMID: 26884338 DOI: 10.1074/jbc.m115.693929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/04/2023] Open
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon theEscherichia coliglycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln(45)-TMD1, Asn(90)-TMD2, Leu(290)-TMD7, Ser(407)-TMD11 and Asn(411)-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [(3)H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd(2+)complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/S407C pair and a CuPh- and Cd(2+)-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influxVmaxconsistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11.
Collapse
Affiliation(s)
- Rongbao Zhao
- From the Departments of Molecular Pharmacology, Medicine
| | - Mitra Najmi
- From the Departments of Molecular Pharmacology
| | - Andras Fiser
- Biochemistry, and Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
7
|
Zulueta A, Razzari C, Fontana G, Femia EA, Faioni EM, Cattaneo M, Trinchera M. Instability of cytosolic phospholipase A2α variant upon cellular expression as a basis for its clinical presentation. Thromb Haemost 2015; 114:208-10. [PMID: 25904158 DOI: 10.1160/th14-11-0926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/24/2015] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Marco Trinchera
- Marco Trinchera, Dipartimento di Medicina Clinica e Sperimentale, Università dell'Insubria, Varese, Italy, Tel.: +39 0332 39 7160, Fax: +39 0332 39 7119, E-mail:
| |
Collapse
|
8
|
Visentin M, Unal ES, Najmi M, Fiser A, Zhao R, Goldman ID. Identification of Tyr residues that enhance folate substrate binding and constrain oscillation of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 2015; 308:C631-41. [PMID: 25608532 DOI: 10.1152/ajpcell.00238.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022]
Abstract
The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/Ki for [(3)H]methotrexate and [(3)H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [(3)H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Ersin Selcuk Unal
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York; and Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
9
|
Abstract
The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described.
Collapse
Affiliation(s)
- Michele Visentin
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461; , , ,
| | | | | | | |
Collapse
|
10
|
Zhao R, Goldman ID. The proton-coupled folate transporter: physiological and pharmacological roles. Curr Opin Pharmacol 2014; 13:875-80. [PMID: 24383099 DOI: 10.1016/j.coph.2013.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states.
Collapse
|
11
|
Duddempudi PK, Goyal R, Date SS, Jansen M. Delineating the extracellular water-accessible surface of the proton-coupled folate transporter. PLoS One 2013; 8:e78301. [PMID: 24205192 PMCID: PMC3799626 DOI: 10.1371/journal.pone.0078301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity - 14% or less – between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology / threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement.
Collapse
Affiliation(s)
- Phaneendra Kumar Duddempudi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raman Goyal
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Swapneeta Sanjay Date
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Duddempudi PK, Nakashe P, Blanton MP, Jansen M. The monomeric state of the proton-coupled folate transporter represents the functional unit in the plasma membrane. FEBS J 2013; 280:2900-15. [PMID: 23601781 DOI: 10.1111/febs.12293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/10/2013] [Accepted: 04/16/2013] [Indexed: 01/20/2023]
Abstract
Folic acid is an essential vitamin required for de novo biosynthesis of nucleotides and amino acids. The proton-coupled folate transporter (PCFT; SLC46A1) has been identified as the major contributor for intestinal folate uptake. It is also involved in folate transport across the blood-brain barrier and into solid tumors. PCFT belongs to the major facilitator superfamily. Major facilitator superfamily members can exist in either monomeric or homo-oligomeric form. Here, we utilized blue native polyacrylamide gel electrophoresis (BN/PAGE) and crosslinking with bi-functional chemicals to investigate the quaternary structure of human PCFT after heterologous expression in Xenopus laevis oocytes and CHO cells. PCFT was expressed in the plasma membrane in both expression systems. The functionality of the utilized PCFT construct was confirmed in oocytes by folic acid induced currents at acidic pH. For both the oocyte and CHO expression system [(3)H]folic acid uptake studies indicated that PCFT was functional. To analyze the oligomeric state of PCFT in the plasma membrane, plasma membranes were isolated by polymerization with colloidal silica and polyacrylic acid and subsequent centrifugation. The digitonin-solubilized non-denatured PCFT migrated during BN/PAGE as a monomer, as judged by comparison with a membrane protein (5-HT(3A) receptor) of known pentameric assembly that was used to create a molecular sizing ladder. The chemical crosslinkers glutaraldehyde and dimethyl adipimidate were not able to covalently link potential higher order PCFT structures to form oligomers that were stable following SDS treatment. Together, our results demonstrate that plasma-membrane PCFT functions as a monomeric protein.
Collapse
Affiliation(s)
- Phaneendra K Duddempudi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
13
|
Shin DS, Zhao R, Fiser A, Goldman ID. Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method. Am J Physiol Cell Physiol 2013; 304:C1159-67. [PMID: 23552283 DOI: 10.1152/ajpcell.00353.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) mediates folate transport across the apical brush-border membrane of the proximal small intestine and the basolateral membrane of choroid plexus ependymal cells. Two loss-of-function mutations in PCFT, which are the basis for hereditary folate malabsorption, have been identified within the fourth transmembrane domain (TMD4) in subjects with this disorder. We have employed the substituted Cys accessibility method (SCAM) to study the accessibilities of all residues in TMD4 and their roles in folate substrate binding to the carrier. When residues 146-167 were replaced by Cys, all except R148C were expressed at the cell surface. Modification of five of these substituted Cys residues (positions 147, 152, 157, 158, and 161) by methanethiosulfonate (MTS) reagents led to reduction of PCFT function. All five residues could be labeled with N-biotinylaminoethyl-MTS, and this could be blocked by the high-affinity PCFT substrate pemetrexed. Pemetrexed also protected PCFT mutant function from inhibitory modification of the substituted Cys at positions 157, 158, and 161 by a MTS. The findings indicate that these five residues in TMD4 are accessible to the aqueous translocation pathway, play a role in folate substrate binding, and are likely located within or near the folate binding pocket. A homology model of PCFT places three of these residues, Phe¹⁵⁷, Gly¹⁵⁸, and Leu¹⁶¹, within a breakpoint in the midportion of TMD4, a region that likely participates in alterations in the PCFT conformational state during carrier cycling.
Collapse
Affiliation(s)
- Daniel Sanghoon Shin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|