1
|
Staufer O, Weber S, Bengtson CP, Bading H, Rustom A, Spatz JP. Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies. NANO LETTERS 2019; 19:3244-3255. [PMID: 30950627 PMCID: PMC6727598 DOI: 10.1021/acs.nanolett.9b00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Indexed: 05/02/2023]
Abstract
Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.
Collapse
Affiliation(s)
- Oskar Staufer
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - C. Peter Bengtson
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Amin Rustom
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Abnormal synchronization patterns in the electrical stimulation-contractile response coupling decrease with noise. Biosystems 2019; 180:63-70. [PMID: 30885687 DOI: 10.1016/j.biosystems.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Abstract
Synchronization theory predicts that if an oscillator interacts with a rhythmical external force, then it should react to a rhythmical force by adjusting its frequency. Furthermore, noise is present in nature, and it affects the nervous and cardiovascular systems. In this paper, we analyze the heart as an oscillator, where noisy periodic electrical stimulation can be regarded as an external forcing. This study aimed to investigate, from an experimental point of view, whether noise can induce synchronization of higher order in the mechanical heart response. A Langendorff heart preparation was used to obtain two variables of the mechanical response, intensity of contractile force and heart rate. The experiments show frequency locking in the electrical stimulation-contractile response coupling with and without noise induced. The role of noise in the response of effector organs invites further investigation.
Collapse
|
3
|
Quijano JC, Vianay B, Bény JL, Meister JJ. Ultrafast Ca2+ wave in cultured vascular smooth muscle cells aligned on a micropatterned surface. Cell Calcium 2013; 54:436-45. [PMID: 24183802 DOI: 10.1016/j.ceca.2013.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
Communication between vascular smooth muscle cells (SMCs) allows control of their contraction and so regulation of blood flow. The contractile state of SMCs is regulated by cytosolic Ca2+ concentration ([Ca2+]i) which propagates as Ca2+ waves over a significant distance along the vessel. We have characterized an intercellular ultrafast Ca2+ wave observed in cultured A7r5 cell line and in primary cultured SMCs (pSMCs) from rat mesenteric arteries. This wave, induced by local mechanical or local KCl stimulation, had a velocity around 15 mm/s. Combining of precise alignment of cells with fast Ca2+ imaging and intracellular membrane potential recording, allowed us to analyze rapid [Ca2+]i dynamics and membrane potential events along the network of cells. The rate of [Ca2+]i increase along the network decreased with distance from the stimulation site. Gap junctions or voltage-operated Ca2+ channels (VOCCs) inhibition suppressed the ultrafast Ca2+ wave. Mechanical stimulation induced a membrane depolarization that propagated and that decayed exponentially with distance. Our results demonstrate that an electrotonic spread of membrane depolarization drives a rapid Ca2+ entry from the external medium through VOCCs, modeled as an ultrafast Ca2+ wave. This wave may trigger and drive slower Ca2+ waves observed ex vivo and in vivo.
Collapse
Affiliation(s)
- Jairo C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia.
| | | | | | | |
Collapse
|
4
|
Alam MJ, Bhayana L, Devi GR, Singh HD, Singh RKB, Sharma BI. Intercellular synchronization of diffusively coupled Ca(2+) oscillators. J Chem Biol 2012; 5:27-34. [PMID: 22962563 PMCID: PMC3251645 DOI: 10.1007/s12154-011-0066-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 08/25/2011] [Indexed: 01/23/2023] Open
Abstract
We examine the synchrony in the dynamics of localized [Ca(2 + )](i) oscillations among a group of cells exhibiting such complex Ca(2 + ) oscillations, connected in the form of long chain, via diffusing coupling where cytosolic Ca(2 + ) and inositol 1,4,5-triphosphate are coupling molecules. Based on our numerical results, we could able to identify three regimes, namely desynchronized, transition and synchronized regimes in the (T - k(e)) (time period-coupling constant) and (A - k(e)) (amplitude-coupling constant) spaces which are supported by phase plots (Δϕ verses time) and recurrence plots, respectively. We further show the increase of synchronization among the cells as the number of coupling molecules increases in the (T - k(e)) and (A - k(e)) spaces.
Collapse
Affiliation(s)
- Md. Jahoor Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Latika Bhayana
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gurumayum Reenaroy Devi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Heisnam Dinachandra Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - R. K. Brojen Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | | |
Collapse
|
5
|
Halidi N, Boittin FX, Bény JL, Meister JJ. Propagation of fast and slow intercellular Ca2+ waves in primary cultured arterial smooth muscle cells. Cell Calcium 2011; 50:459-67. [DOI: 10.1016/j.ceca.2011.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
|
6
|
Mechanisms of propagation of intercellular calcium waves in arterial smooth muscle cells. Biophys J 2010; 99:333-43. [PMID: 20643050 DOI: 10.1016/j.bpj.2010.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 11/24/2022] Open
Abstract
In rat mesenteric arteries, smooth muscle cells exhibit intercellular calcium waves in response to local phenylephrine stimulation. These waves have a velocity of approximately 20 cells/s and a range of approximately 80 cells. We analyze these waves in a theoretical model of a population of coupled smooth muscle cells, based on the hypothesis that the wave results from cell membrane depolarization propagation. We study the underlying mechanisms and highlight the importance of voltage-operated channels, calcium-induced calcium release, and chloride channels. Our model is in agreement with experimental observations, and we demonstrate that calcium waves presenting a velocity of approximately 20 cells/s can be mediated by electrical coupling. The wave velocity is limited by the time needed for calcium influx through voltage-operated calcium channels and the subsequent calcium-induced calcium release, and not by the speed of the depolarization spreading. The waves are partially regenerated, but have a spatial limit in propagation. Moreover, the model predicts that a refractory period of calcium signaling may significantly affect the wave appearance.
Collapse
|
7
|
Elson EC. Complex life forms may arise from electrical processes. Theor Biol Med Model 2010; 7:26. [PMID: 20576122 PMCID: PMC2908058 DOI: 10.1186/1742-4682-7-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022] Open
Abstract
There is still not an appealing and testable model to explain how single-celled organisms, usually following fusion of male and female gametes, proceed to grow and evolve into multi-cellular, complexly differentiated systems, a particular species following virtually an invariant and unique growth pattern. An intrinsic electrical oscillator, resembling the cardiac pacemaker, may explain the process. Highly auto-correlated, it could live independently of ordinary thermodynamic processes which mandate increasing disorder, and could coordinate growth and differentiation of organ anlage.
Collapse
Affiliation(s)
- Edward C Elson
- Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, Maryland 20742, USA.
| |
Collapse
|
8
|
Imtiaz MS, von der Weid PY, van Helden DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J 2009; 277:278-85. [PMID: 19895582 DOI: 10.1111/j.1742-4658.2009.07437.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Entrained oscillations in Ca(2+) underlie many biological pacemaking phenomena. In this article, we review a long-range signaling mechanism in smooth muscle that results in global outcomes of local interactions. Our results are derived from studies of the following: (a) slow-wave depolarizations that underlie rhythmic contractions of gastric smooth muscle; and (b) membrane depolarizations that drive rhythmic contractions of lymphatic smooth muscle. The main feature of this signaling mechanism is a coupled oscillator-based synchronization of Ca(2+) oscillations across cells that drives membrane potential changes and causes coordinated contractions. The key elements of this mechanism are as follows: (a) the Ca(2+) release-refill cycle of endoplasmic reticulum Ca(2+) stores; (b) Ca(2+)-dependent modulation of membrane currents; (c) voltage-dependent modulation of Ca(2+) store release; and (d) cell-cell coupling through gap junctions or other mechanisms. In this mechanism, Ca(2+) stores alter the frequency of adjacent stores through voltage-dependent modulation of store release. This electrochemical coupling is many orders of magnitude stronger than the coupling through diffusion of Ca(2+) or inositol 1,4,5-trisphosphate, and thus provides an effective means of long-range signaling.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
9
|
Sergeant GP, Craven M, Hollywood MA, McHale NG, Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: modulation by nitric oxide and cGMP. J Sex Med 2008; 6:958-966. [PMID: 19138373 DOI: 10.1111/j.1743-6109.2008.01090.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca(2+) level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca(2+) signals regulate tone, and erection occurs as a result of inhibition of Ca(2+) oscillations by NO. AIMS The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca(2+) oscillations and, if so, whether these were regulated by NO. METHODS Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca(2+) (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca(2+). MAIN OUTCOME MEASURE Cytosolic Ca(2+) was measured in isolated smooth muscle cells and tissue slices. Results. Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca(2+) waves that spread at a mean velocity of 65 microm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca(2+) waves was associated with an inward current typical of the Ca(2+)-activated Cl(-) currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca(2+) store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP(3)-mediated Ca(2+) release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca(2+) oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. CONCLUSIONS These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO.
Collapse
Affiliation(s)
- Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Michael Craven
- Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland;.
| |
Collapse
|