1
|
Wang X, Yin G, Yang Y, Tian X. Ciliary and Non-Ciliary Roles of IFT88 in Development and Diseases. Int J Mol Sci 2025; 26:2110. [PMID: 40076734 PMCID: PMC11901018 DOI: 10.3390/ijms26052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cilia are highly specialized cellular projections emanating from the cell surface, whose defects contribute to a spectrum of diseases collectively known as ciliopathies. Intraflagellar transport protein 88 (IFT88) is a crucial component of the intraflagellar transport-B (IFT-B) subcomplex, a protein complex integral to ciliary transport. The absence of IFT88 disrupts the formation of ciliary structures; thus, animal models with IFT88 mutations, including the oak ridge polycystic kidney (ORPK) mouse model and IFT88 conditional allelic mouse model, are frequently employed in molecular and clinical studies of ciliary functions and ciliopathies. IFT88 plays a pivotal role in a variety of cilium-related processes, including organ fibrosis and cyst formation, metabolic regulation, chondrocyte development, and neurological functions. Moreover, IFT88 also exhibits cilium-independent functions, such as spindle orientation, planar cell polarity establishment, and actin organization. A deeper understanding of the biological events and molecular mechanisms mediated by IFT88 is anticipated to advance the development of diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
| | | | | | - Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.W.); (G.Y.); (Y.Y.)
| |
Collapse
|
2
|
de Castro-Suárez N, Trame MN, Ramos-Suzarte M, Dávalos JM, Bacallao-Mendez RA, Maceo-Sinabele AR, Mangas-Sanjuán V, Reynaldo-Fernández G, Rodríguez-Vera L. Semi-Mechanistic Pharmacokinetic Model to Guide the Dose Selection of Nimotuzumab in Patients with Autosomal Dominant Polycystic Kidney Disease. Pharmaceutics 2020; 12:pharmaceutics12121147. [PMID: 33256255 PMCID: PMC7760646 DOI: 10.3390/pharmaceutics12121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by an overexpression of epidermal growth factor receptor (EGFR). Nimotuzumab is a recombinant humanized monoclonal antibody against human EGFR. The aim of this study was to develop a population pharmacokinetic model for nimotuzumab and to identify demographic and clinical predictive factors of the pharmacokinetic variability. The population pharmacokinetics (PopPK) of nimotuzumab was characterized using a nonlinear mixed-effect modeling approach with NONMEM®. A total of 422 log-transformed concentration-versus-time datapoints from 20 patients enrolled in a single-center phase I clinical trial were used. Quasi steady state approximation of the full TMDD (target-mediated drug disposition) model with constant target concentration best described the concentration-time profiles. A turnover mediator was included which stimulates the non-specific clearance of mAb in the central compartment in order to explain the reduced levels at higher doses. Covariates had no influence on the PK (pharmacokinetics) parameters. The model was able to detect that the maximum effective dose in ADPKD subjects is 100 mg. The developed PopPK model may be used to guide the dose selection for nimotuzumab during routine clinical practice in patients with polycystic kidney disease. The model will further support the ongoing investigations of the PK/PD relationships of nimotuzumab to improve its therapeutic use in other disease areas.
Collapse
Affiliation(s)
- Niurys de Castro-Suárez
- Pharmacy Department, Institute of Food and Pharmacy, University of Havana, Havana 11300, Cuba; (N.d.C.-S.); (G.R.-F.); (L.R.-V.)
| | - Mirjam N. Trame
- AVROBIO Inc., Department of Translational Data Sciences and Advanced Analytics, Cambridge, MA 02139, USA;
| | | | - José M. Dávalos
- National Institute of Nephrology (INEF), Havana 10400, Cuba; (J.M.D.); (R.A.B.-M.)
| | | | | | - Víctor Mangas-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +3-49-6354-3351
| | - Gledys Reynaldo-Fernández
- Pharmacy Department, Institute of Food and Pharmacy, University of Havana, Havana 11300, Cuba; (N.d.C.-S.); (G.R.-F.); (L.R.-V.)
| | - Leyanis Rodríguez-Vera
- Pharmacy Department, Institute of Food and Pharmacy, University of Havana, Havana 11300, Cuba; (N.d.C.-S.); (G.R.-F.); (L.R.-V.)
| |
Collapse
|
3
|
Li T, Tuo B. Pathophysiology of hepatic Na +/H + exchange (Review). Exp Ther Med 2020; 20:1220-1229. [PMID: 32742358 PMCID: PMC7388279 DOI: 10.3892/etm.2020.8888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of membrane proteins that contribute to exchanging one intracellular proton for one extracellular sodium. The family of NHEs consists of nine known members, NHE1-9. Each isoform represents a different gene product that has unique tissue expression, membrane localization, physiological effects, pathological regulation and sensitivity to drug inhibitors. NHE1 was the first to be discovered and is often referred to as the 'housekeeping' isoform of the NHE family. NHEs are not only involved in a variety of physiological processes, including the control of transepithelial Na+ absorption, intracellular pH, cell volume, cell proliferation, migration and apoptosis, but also modulate complex pathological events. Currently, the vast majority of review articles have focused on the role of members of the NHE family in inflammatory bowel disease, intestinal infectious diarrhea and digestive system tumorigenesis, but only a few reviews have discussed the role of NHEs in liver disease. Therefore, the present review described the basic biology of NHEs and highlighted their physiological and pathological effects in the liver.
Collapse
Affiliation(s)
- Tingting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2020; 67:109497. [PMID: 31830556 PMCID: PMC6957738 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
5
|
Liu Y, Chen F, Ji L, Zhang L, Xu YJ, Dhalla NS. Role of lysophosphatidic acid in vascular smooth muscle cell proliferation. Can J Physiol Pharmacol 2019; 98:103-110. [PMID: 31369714 DOI: 10.1139/cjpp-2019-0264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysophosphatidic acid (LPA) is an important lipid molecule for signal transduction in cell proliferation. Although the effects of LPA on vascular smooth muscle (VSM) cell growth have been reported previously, the underlying mechanisms of its action are not fully understood. The present study was undertaken to investigate the effects of some inhibitors of different protein kinases and other molecular targets on LPA-induced DNA synthesis as well as gene expression in the aortic VSM cells. The DNA synthesis was studied by the [3H]thymidine incorporation method and the gene expression was investigated by the real-time PCR technique. It was observed that the LPA-induced DNA synthesis was attenuated by inhibitors of protein kinase C (PKC) (staurosporine, calphostin C, and bisindolylmaleimide), phosphoinositide 3-kinase (PI3K) (wortmannin and LY294002), and ribosomal p70S6 kinase (p70S6K) (rapamycin). The inhibitors of guanine protein coupled receptors (GPCR) (pertussis toxin), phospholipase C (PLC) (U73122 and D609), and sodium-hydrogen exchanger (NHE) (amiloride and dimethyl amiloride) were also shown to depress the LPA-induced DNA synthesis. Furthermore, gene expressions for PLC β1 isoform, PKC δ and ε isoforms, casein kinase II β isoform, and endothelin-1A receptors were elevated by LPA. These results suggest that the LPA-induced proliferation of VSM cells is mediated through the activation of GPCR and multiple protein kinases as well as gene expressions of some of their specific isoforms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China, 130033
| | - Feng Chen
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China, 130033
| | - Lei Ji
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China, 130033
| | - Lingrui Zhang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China, 130033
| | - Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
6
|
Saigusa T, Yue Q, Bunni MA, Bell PD, Eaton DC. Loss of primary cilia increases polycystin-2 and TRPV4 and the appearance of a nonselective cation channel in the mouse cortical collecting duct. Am J Physiol Renal Physiol 2019; 317:F632-F637. [PMID: 31313950 DOI: 10.1152/ajprenal.00210.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Flow-related bending of cilia results in Ca2+ influx through a polycystin-1 (Pkd1) and polycystin-2 (Pkd2) complex, both of which are members of the transient receptor potential (TRP) family (TRPP1 and TRPP2, respectively). Deletion of this complex as well as cilia result in polycystic kidney disease. The Ca2+ influx pathway has been previously characterized in immortalized collecting duct cells without cilia and found to be a 23-pS channel that was a multimere of TRPP2 and TRPV4. The purpose of the present study was to determine if this TRPP2 and TRPV4 multimere exists in vivo. Apical channel activity was measured using the patch-clamp technique from isolated split-open cortical collecting ducts from adult conditional knockout mice with (Ift88flox/flox) or without (Ift88-/-) cilia. Single tubules were isolated for measurements of mRNA for Pkd1, Pkd2, Trpv4, and epithelial Na+ channel subunits. The predominant channel activity from Ift88flox/flox mice was from epithelial Na+ channel [5-pS Na+-selective channels with long mean open times (475.7 ± 83.26 ms) and open probability > 0.2]. With the loss of cilia, the predominant conductance was a 23-pS nonselective cation channel (reversal potential near 0) with a short mean open time (72 ± 17 ms), open probability < 0.08, and a characteristic flickery opening. Loss of cilia increased mRNA levels for Pkd2 and Trpv4 from single isolated cortical collecting ducts. In conclusion, 23-pS channels exist in vivo, and activity of this channel is elevated with loss of cilia, consistent with previous finding of an elevated-unregulated Ca2+-permeable pathway at the apical membrane of collecting duct cells that lack cilia.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Marlene A Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
The Role of the Primary Cilium in Sensing Extracellular pH. Cells 2019; 8:cells8070704. [PMID: 31336778 PMCID: PMC6679169 DOI: 10.3390/cells8070704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Biosensors on the membrane of the vascular endothelium are responsible for sensing mechanical and chemical signals in the blood. Transduction of these stimuli into intracellular signaling cascades regulate cellular processes including ion transport, gene expression, cell proliferation, and/or cell death. The primary cilium is a well-known biosensor of shear stress but its role in sensing extracellular pH change has never been examined. As a cellular extension into the immediate microenvironment, the cilium could be a prospective sensor for changes in pH and regulator of acid response in cells. We aim to test our hypothesis that the primary cilium plays the role of an acid sensor in cells using vascular endothelial and embryonic fibroblast cells as in vitro models. We measure changes in cellular pH using pH-sensitive 2',7'-biscarboxyethy1-5,6-carboxyfluorescein acetoxy-methylester (BCECF) fluorescence and mitogen-activated protein kinase (MAPK) activity to quantify responses to both extracellular pH (pHo) and intracellular pH (pHi) changes. Our studies show that changes in pHo affect pHi in both wild-type and cilia-less Tg737 cells and that the kinetics of the pHi response are similar in both cells. Acidic pHo or pHi was observed to change the length of primary cilia in wild-type cells while the cilia in Tg737 remained absent. Vascular endothelial cells respond to acidic pH through activation of ERK1/2 and p38-mediated signaling pathways. The cilia-less Tg737 cells exhibit delayed responsiveness to pHo dependent and independent pHi acidification as depicted in the phosphorylation profile of ERK1/2 and p38. Otherwise, intracellular pH homeostatic response to acidic pHo is similar between wild-type and Tg737 cells, indicating that the primary cilia may not be the sole sensor for physiological pH changes. These endothelial cells respond to pH changes with a predominantly K+-dependent pHi recovery mechanism, regardless of ciliary presence or absence.
Collapse
|
8
|
Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V, Rao R. NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol 2019; 597:499-519. [PMID: 30242840 PMCID: PMC6332743 DOI: 10.1113/jp276796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Significant and selective up-regulation of the Na+ /H+ exchanger NHA2 (SLC9B2) was observed in cysts of patients with autosomal dominant polycystic kidney disease. Using the MDCK cell model of cystogenesis, it was found that NHA2 increases cyst size. Silencing or pharmacological inhibition of NHA2 inhibits cyst formation in vitro. Polycystin-1 represses NHA2 expression via Ca2+ /NFAT signalling whereas the dominant negative membrane-anchored C-terminal fragment (PC1-MAT) increased NHA2 levels. Drugs (caffeine, theophylline) and hormones (vasopressin, aldosterone) known to exacerbate cysts elicit NHA2 expression. Taken together, the findings reveal NHA2 as a potential new player in salt and water homeostasis in the kidney and in the pathogenesis of polycystic kidney disease. ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The molecular pathways linking polycystins to cyst development in ADPKD are still unclear. Intracystic fluid secretion via ion transporters and channels plays a crucial role in cyst expansion in ADPKD. Unexpectedly, we observed significant and selective up-regulation of NHA2, a member of the SLC9B family of Na+ /H+ exchangers, that correlated with cyst size and disease severity in ADPKD patients. Using three-dimensional cultures of MDCK cells to model cystogenesis in vitro, we showed that ectopic expression of NHA2 is causal to increased cyst size. Induction of PC1 in MDCK cells inhibited NHA2 expression with concordant inhibition of Ca2+ influx through store-dependent and -independent pathways, whereas reciprocal activation of Ca2+ influx by the dominant negative membrane-anchored C-terminal tail fragment of PC1 elevated NHA2. We showed that NHA2 is a target of Ca2+ /NFAT signalling and is transcriptionally induced by methylxanthine drugs such as caffeine and theophylline, which are contraindicated in ADPKD patients. Finally, we observed robust induction of NHA2 by vasopressin, which is physiologically consistent with increased levels of circulating vasopressin and up-regulation of vasopressin V2 receptors in ADPKD. Our findings have mechanistic implications on the emerging use of vasopressin V2 receptor antagonists such as tolvaptan as safe and effective therapy for polycystic kidney disease and reveal a potential new regulator of transepithelial salt and water transport in the kidney.
Collapse
Affiliation(s)
- Hari Prasad
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Donna K. Dang
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kalyan C. Kondapalli
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Niranjana Natarajan
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Valeriu Cebotaru
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Rajini Rao
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
9
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
10
|
Saigusa T, Bell PD. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease. Physiology (Bethesda) 2016; 30:195-207. [PMID: 25933820 DOI: 10.1152/physiol.00032.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
11
|
Saigusa T, Dang Y, Bunni MA, Amria MY, Steele SL, Fitzgibbon WR, Bell PD. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease. Physiol Rep 2015; 3:3/5/e12405. [PMID: 25999403 PMCID: PMC4463833 DOI: 10.14814/phy2.12405] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanism for early hypertension in polycystic kidney disease (PKD) has not been elucidated. One potential pathway that may contribute to the elevation in blood pressure in PKD is the activation of the intrarenal renin-angiotensin-system (RAS). For example, it has been shown that kidney cyst and cystic fluid contains renin, angiotensin II (AngII), and angiotensinogen (Agt). Numerous studies suggest that ciliary dysfunction plays an important role in PKD pathogenesis. However, it is unknown whether the primary cilium affects the intrarenal RAS in PKD. The purpose of this study was to determine whether loss of cilia or polycystin 1 (PC1) increases intrarenal RAS in mouse model of PKD. Adult Ift88 and Pkd1 conditional floxed allele mice with or without cre were administered tamoxifen to induce global knockout of the gene. Three months after tamoxifen injection, kidney tissues were examined by histology, immunofluorescence, western blot, and mRNA to assess intrarenal RAS components. SV40 immortalized collecting duct cell lines from hypomorphic Ift88 mouse were used to assess intrarenal RAS components in collecting duct cells. Mice without cilia and PC1 demonstrated increased kidney cyst formation, systolic blood pressure, prorenin, and kidney and urinary angiotensinogen levels. Interestingly immunofluorescence study of the kidney revealed that the prorenin receptor was localized to the basolateral membrane of principal cells in cilia (−) but not in cilia (+) kidneys. Collecting duct cAMP responses to AngII administration was greater in cilia (−) vs. cilia (+) cells indicating enhanced intrarenal RAS activity in the absence of cilia. These data suggest that in the absence of cilia or PC1, there is an upregulation of intrarenal RAS components and activity, which may contribute to elevated blood pressure in PKD.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Yujing Dang
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Marlene A Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - May Y Amria
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Stacy L Steele
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|