1
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Brong A, Kontrogianni-Konstantopoulos A. Sex Chromosomes and Sex Hormones: Dissecting the Forces That Differentiate Female and Male Hearts. Circulation 2025; 151:474-489. [PMID: 39960989 PMCID: PMC11839176 DOI: 10.1161/circulationaha.124.069493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The heart is a highly sex-biased organ, as sex shapes innumerable aspects of heart health and disease. Sex chromosomes and sex hormones -testosterone, progesterone, and estrogen- establish and perpetuate the division between male and female myocardium. Of these differentiating factors, the insulating effects of estrogen have been rigorously interrogated and reviewed, whereas the influence of sex chromosomes, testosterone, and progesterone remains in dispute or ill-defined. Here, we synthesize growing evidence that sex chromosomes and sex hormones substantially bias heart form, function, and dysfunction in a context-dependent fashion. The discrete protective functions ascribed to each of the 3 estrogen receptors are also enumerated. Subsequently, we overview obstacles that have historically discouraged the inclusion of female subjects in basic science such as the impact of the female estrus cycle and reproductive senescence on data reliability and reproducibility. Furthermore, we weigh the utility of several common strategies to intercept and rescue sex-specific protection. Last, we warn of common compounds in animal chow and cell culture that interfere with estrogen signaling. In sum, we survey the controversies and challenges that stem from sex-inclusive cardiovascular research, comparing the possible causes of cardiac sex bias, elucidating sex chromosome or hormone-dependent processes in the heart, describing common lapses that imperil female and male cell and animal work, and illuminating facets of the female heart yet unexplored or still uncertain.
Collapse
Affiliation(s)
- Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Klarica Gembić T, Grebić D, Gulić T, Golemac M, Avirović M. Predictive and Prognostic Values of Glycoprotein 96, Androgen Receptors, and Extranodal Extension in Sentinel Lymph Node-Positive Breast Cancer: An Immunohistochemical Retrospective Study. J Clin Med 2024; 13:7665. [PMID: 39768587 PMCID: PMC11677116 DOI: 10.3390/jcm13247665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: In this paper, we investigate the association of glycoprotein 96 (GP96) and androgen receptor (AR) expression with clinicopathological factors, additional axillary lymph node burden, and their potential role in predicting 5-year overall survival (OS) and disease-free survival (DFS) in breast cancer (BC) patients with sentinel lymph node (SLN) involvement. We also explore the prognostic value of the presence of extranodal extension (ENE) in SLN. Methods: We retrospectively enrolled 107 female patients with cT1-T2 invasive BC and positive SLN biopsy. GP96 and AR expression were immunohistochemically evaluated on tissue microarrays constructed from two 2 mm diameter cores of formalin-fixed paraffin-embedded tumor tissues from each patient. ENE in SLN was measured in the highest (HD-ENE) and widest diameter (WD-ENE). Relative GP96 gene expression was determined using real-time quantitative PCR. Results: The analysis revealed ENE in SLN as the strongest predictive factor for non-SLN metastases. Patients with WD-ENE > HD-ENE had a higher risk of non-SLN metastases and worse DFS compared to those with WD-ENE ≤ HD-ENE. High GP96 expression was associated with a greater relative risk for locoregional recurrence but showed no significant impact on OS or DFS. Histological grade 3, extensive intraductal component (EIC), higher lymph node ratio (LNR), and negative AR were associated with worse DFS, while age, histological grade 3, EIC, and higher LNR were independent predictors of OS. GP96 mRNA levels were elevated in BC tissue compared to normal breast tissue. Conclusions: ENE in SLN is the strongest predictor of non-SLN involvement and could also have prognostic significance. While GP96 expression does not influence survival outcomes, AR expression could be used as a valuable biomarker in the follow-up of BC patients.
Collapse
Affiliation(s)
- Tihana Klarica Gembić
- Clinical Hospital Center Rijeka, Department of Nuclear Medicine, Krešimirova 42, 51000 Rijeka, Croatia
| | - Damir Grebić
- Clinical Hospital Center Rijeka, Department of General and Oncological Surgery, Krešimirova 42, 51000 Rijeka, Croatia;
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tamara Gulić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Mijo Golemac
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Manuela Avirović
- Department of General Pathology and Pathologic Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
5
|
Zhao L, Chen C, Wang L, Liu Y, Gong F, Wang J, Sun H, Wang D, Wang Z. Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii). Integr Zool 2024; 19:1105-1120. [PMID: 38556617 DOI: 10.1111/1749-4877.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunxiao Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Yan Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji, Xinjiang, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Mathis D, du Toit T, Altinkilic EM, Stojkov D, Urzì C, Voegel CD, Wu V, Zamboni N, Simon HU, Nuoffer JM, Flück CE, Felser A. Mitochondrial dysfunction results in enhanced adrenal androgen production in H295R cells. J Steroid Biochem Mol Biol 2024; 243:106561. [PMID: 38866189 DOI: 10.1016/j.jsbmb.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The role of mitochondria in steroidogenesis is well established. However, the specific effects of mitochondrial dysfunction on androgen synthesis are not fully understood. In this study, we investigate the effects of various mitochondrial and metabolic inhibitors in H295R adrenal cells and perform a comprehensive analysis of steroid and metabolite profiling. We report that mitochondrial complex I inhibition by rotenone shifts cells toward anaerobic metabolism with a concomitant hyperandrogenic phenotype characterized by rapid stimulation of dehydroepiandrosterone (DHEA, 2 h) and slower accumulation of androstenedione and testosterone (24 h). Screening of metabolic inhibitors confirmed DHEA stimulation, which included mitochondrial complex III and mitochondrial pyruvate carrier inhibition. Metabolomic studies revealed truncated tricarboxylic acid cycle with an inverse correlation between citric acid and DHEA production as a common metabolic marker of hyperandrogenic inhibitors. The current study sheds light on a direct interplay between energy metabolism and androgen biosynthesis that could be further explored to identify novel molecular targets for efficient treatment of androgen excess disorders.
Collapse
Affiliation(s)
- Déborah Mathis
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Therina du Toit
- Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland; Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Switzerland
| | - Christian Urzì
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland; Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Clarissa D Voegel
- Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Vincen Wu
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PHRT Swiss Multi Omics Center, Zurich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Jean-Marc Nuoffer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland
| | - Andrea Felser
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
7
|
Huo YN, Yang HY, Ke HY, Lin CY, Tsai CS. Androgen receptor activation inhibits endothelial cell migration in vitro and angiogenesis in vivo. Eur J Cell Biol 2024; 103:151456. [PMID: 39288691 DOI: 10.1016/j.ejcb.2024.151456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Our previous research revealed that androgen receptor (AR) activation reduces endothelial cell proliferation via non-genomic pathways. We hypothesized that AR activation might also affect endothelial cell migration, a critical step in angiogenesis. Our data demonstrates that treatment of human umbilical vein endothelial cells (HUVECs) with AR agonists, metribolone (R1881) or dihydrotestosterone (DHT), results in a dose-dependent reduction in migration, which can be reversed by AR antagonists or AR knockdown. Mechanistically, R1881 inhibits HUVEC migration by suppressing RhoA activity through the cSrc/FAK/paxillin pathway and promoting RhoA degradation via RhoA-p27 complex formation, ultimately resulting in RhoA ubiquitination. Transfection with constitutively active RhoA-V14 rescues the inhibitory effect of R1881 on HUVEC migration. Furthermore, R1881 elevates intracellular vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) levels but reduces VEGF secretion from HUVECs. This reduction is attributed to the formation of VEGF-CTGF complexes in the cytosol induced by R1881. Transfection with RhoA-V14 reduces CTGF levels and VEGF-CTGF complex formation, leading to enhanced VEGF secretion. Pre-treatment with WP631, a CTGF inhibitor, mitigates the R1881-induced reduction in VEGF secretion and HUVECs migration. In vivo assessments using zebrafish angiogenesis and mouse matrigel plug assays validate the anti-angiogenic effects of R1881. These findings provide insight into the molecular mechanisms through which AR activation modulates endothelial cell migration and angiogenesis.
Collapse
Affiliation(s)
- Yen-Nien Huo
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; Institute of Preventive Medicine, National Defense Medical Center, Taipei 114, Taipei 114 Taiwan.
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
8
|
Cheng G, Xu J, Wang H, Chen J, Huang L, Qian ZR, Fan Y. mtPCDI: a machine learning-based prognostic model for prostate cancer recurrence. Front Genet 2024; 15:1430565. [PMID: 39296545 PMCID: PMC11408181 DOI: 10.3389/fgene.2024.1430565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background This research seeks to formulate a prognostic model for forecasting prostate cancer recurrence by examining the interaction between mitochondrial function and programmed cell death (PCD). Methods The research involved analyzing four gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) using univariate Cox regression. These analyses identified genes linked with mitochondrial function and PCD that correlate with recurrence prognosis. Various machine learning algorithms were then employed to construct an optimal predictive model. Results A key outcome was the creation of a mitochondrial-related programmed cell death index (mtPCDI), which effectively predicts the prognosis of prostate cancer patients. It was observed that individuals with lower mtPCDI exhibited higher immune activity, correlating with better recurrence outcomes. Conclusion The study demonstrates that mtPCDI can be used for personalized risk assessment and therapeutic decision-making, highlighting its clinical significance and providing insights into the biological processes affecting prostate cancer recurrence.
Collapse
Affiliation(s)
- Guoliang Cheng
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Junrong Xu
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Honghua Wang
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jingzhao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Liwei Huang
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Yong Fan
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
9
|
Meakin AS, Smith M, Morrison JL, Roberts CT, Lappas M, Ellery SJ, Holland O, Perkins A, McCracken SA, Flenady V, Clifton VL. Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes. Int J Mol Sci 2024; 25:1688. [PMID: 38338965 PMCID: PMC10855055 DOI: 10.3390/ijms25031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
A birthweight centile (BWC) below the 25th is associated with an elevated risk of adverse perinatal outcomes, particularly among males. This male vulnerability may stem from alterations in placenta-specific androgen signalling, a signalling axis that involves the androgen receptor (AR)-mediated regulation of target genes containing androgen response elements (AREs). In this study, we examined global and ARE-specific transcriptomic signatures in term male placentae (≥37 weeks of gestation) across BWC subcategories (<10th, 10th-30th, >30th) using RNA-seq and gene set enrichment analysis. ARE-containing transcripts in placentae with BWCs below the 10th percentile were upregulated compared to those in the 10th-30th and >30th percentiles, which coincided with the enrichment of gene sets related to hypoxia and the suppression of gene sets associated with mitochondrial function. In the absence of ARE-containing transcripts in silico, <10th and 10th-30th BWC subcategory placentae upregulated gene sets involved in vasculature development, immune function, and cell adhesion when compared to those in the >30th BWC subcategory. Collectively, our in silico findings suggest that changes in the expression of ARE-containing transcripts in male placentae may contribute to impaired placental vasculature and therefore result in reduced fetal growth outcomes.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - Melanie Smith
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (M.S.); (C.T.R.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (M.S.); (C.T.R.)
| | - Martha Lappas
- Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, The University of Melbourne, Heidelberg, VIC 3084, Australia;
| | - Stacey J. Ellery
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia;
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Olivia Holland
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (O.H.); (A.P.)
| | - Anthony Perkins
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (O.H.); (A.P.)
- School of Health, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Sharon A. McCracken
- Women and Babies Research, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Vicki Flenady
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - Vicki L. Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia;
| |
Collapse
|
10
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Ubba V, Joseph S, Awe O, Jones D, Dsilva MK, Feng M, Wang J, Fu X, Akbar RJ, Bodnar BH, Hu W, Wang H, Yang X, Yang L, Yang P, Ahima R, Divall S, Wu S. Neuronal AR Regulates Glucose Homeostasis and Energy Expenditure in Lean Female Mice With Androgen Excess. Endocrinology 2023; 164:bqad141. [PMID: 37738624 DOI: 10.1210/endocr/bqad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice. A glucose tolerance test revealed impaired glucose tolerance that was partially alleviated in the SynARKO-dihydrotestosterone (DHT) mice compared with Con-DHT mice after 4 months of DHT treatment. Heat production and food intake was higher in Con-DHT mice than in Con-veh mice; these effects were not altered between SynARKO-veh and SynARKO-DHT mice, indicating that excess androgens may partially alter calorie intake and energy expenditure in females via the neuronal Ar. The pAkt/Akt activity was higher in the hypothalamus in Con-DHT mice than in Con-veh mice, and this effect was attenuated in SynARKO-DHT mice. Western blot studies show that markers of inflammation and microglia activation, such as NF-kB p-65 and IBA1, increased in the hypothalamus of Con-DHT mice compared with Con-veh. These studies suggest that neuronal Ar mediates the metabolic impacts of androgen excess in females.
Collapse
Affiliation(s)
- Vaibhave Ubba
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Serene Joseph
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin Jones
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Milan K Dsilva
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Junjiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Xiaomin Fu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Razeen J Akbar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany H Bodnar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rexford Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, WA 98145-5005, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| |
Collapse
|
12
|
Parsons AM, Rajendran RR, Whitcomb LA, Bouma GJ, Chicco AJ. Characterization of trophoblast mitochondrial function and responses to testosterone treatment in ACH-3P cells. Placenta 2023; 137:70-77. [PMID: 37087951 DOI: 10.1016/j.placenta.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.
Collapse
Affiliation(s)
- Agata M Parsons
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ranjitha Raja Rajendran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Pelliccia A, Capradossi F, Corsi F, Tarquini GD, Bruni E, Reichle A, Torino F, Ghibelli L. Androgen Deprivation Freezes Hormone-Sensitive Prostate Cancer Cells in a Reversible, Genetically Unstable Quasi-Apoptotic State, Bursting into Full Apoptosis upon Poly(ADP-ribose) Polymerase Inhibition. Int J Mol Sci 2023; 24:ijms24032040. [PMID: 36768364 PMCID: PMC9917232 DOI: 10.3390/ijms24032040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Androgen deprivation therapy (ADT) is a powerful treatment for metastatic hormone-sensitive prostate cancer (mHSPC) patients, but eventually and inevitably, cancer relapses, progressing to the fatal castration-resistant (CR)PC stage. Progression implies the emergence of cells proliferating in the absence of androgen through still elusive mechanisms. We show here for the first time that ADT induces LNCaP mHSPC cells to collectively enter a metastable quasi-apoptotic state (QUAPS) consisting of partial mitochondrial permeabilization, limited BAX and caspase activation, and moderate induction of caspase-dependent dsDNA breaks; despite this, cells maintain full viability. QUAPS is destabilized by poly(ADP)-polymerase inhibition (PARPi), breaking off toward overt intrinsic apoptosis and culture extinction. Instead, QUAPS is rapidly and efficiently reverted upon androgen restoration, with mitochondria rapidly recovering integrity and cells collectively resuming normal proliferation. Notably, replication restarts before DNA repair is completed, and implies an increased micronuclei frequency, indicating that ADT promotes genetic instability. The recovered cells re-acquire insensitivity to PARPi (as untreated LNCaP), pointing to specific, context-dependent vulnerability of mHSPC cells to PARPi during ADT. Summarizing, QUAPS is an unstable, pro-mutagenic state developing as a pro-survival pathway stabilized by PARP, and constitutes a novel viewpoint explaining how ADT-treated mHSPC may progress to CRPC, indicating possible preventive countermeasures.
Collapse
Affiliation(s)
- Andrea Pelliccia
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (A.P.); (L.G.); Tel.: +39-06-7259-4095 (A.P.); +39-06-7259-4218 (L.G.)
| | | | - Francesca Corsi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Emanuele Bruni
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (A.P.); (L.G.); Tel.: +39-06-7259-4095 (A.P.); +39-06-7259-4218 (L.G.)
| |
Collapse
|