1
|
Bhuiyan P, Sun Z, Chen Y, Qian Y. Peripheral surgery triggers mast cells activation: Focusing on neuroinflammation. Behav Brain Res 2023; 452:114593. [PMID: 37499912 DOI: 10.1016/j.bbr.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Peripheral surgery can lead to a systemic aseptic inflammatory response comprising several mediators aiming at restoring tissue homeostasis. It induces inflammatory mechanisms through neuroimmune interaction between the periphery and to brain which also plays a critical role in causing cognitive impairments. Accumulating scientific evidence revealed that acute neuroinflammation of the brain triggered by peripheral surgery that causes peripheral inflammation leads to transmitting signals into the brain through immune cells. Mast cells (MCs) play an important role in the acute neuroinflammation induced by peripheral surgical trauma. After peripheral surgery, brain-resident MCs can be rapidly activated followed by releasing histamine, tryptase, and other inflammatory mediators. These mediators then interact with other immune cells in the peripheral and amplify the signal into the brain by disrupting BBB and activating principle innate immune cells of brain including microglia, astrocytes, and vascular endothelial cells, which release abundant inflammatory mediators and in turn accelerate the activation of brain MCs, amplify the cascade effect of neuroinflammatory response. Surgical stress may induce HPA axis activation by releasing corticotropin-releasing hormone (CRH) subsequently influence the activation of brain MCs, thus resulting in impaired synaptic plasticity. Herein, we discuss the better understating of MCs mediated neuroinflammation mechanisms after peripheral surgery and potential therapeutic targets for controlling inflammatory cascades.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Chikuda M, Sato K. Effects of dexmedetomidine on porcine pulmonary artery vascular smooth muscle. BMC Anesthesiol 2019; 19:176. [PMID: 31510933 PMCID: PMC6740015 DOI: 10.1186/s12871-019-0843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background The α2-receptor agonist dexmedetomidine (Dex) has been shown to produce sedative and analgesic effects not only with systemic administration but also when administered in the extradural space and around peripheral nerves. The effects and mechanism of action of Dex on pulmonary arteries, however, have not been determined. This study therefore aimed to investigate the effect of Dex on pulmonary arterial vascular smooth muscle by evaluating changes in isometric contraction tension. We then attempted to determine the effects of Dex on depolarization stimulation and receptor stimulation. Methods Endothelium-denuded porcine pulmonary arteries were sliced into 2- to 3-mm rings. We then exposed them to certain substances at various concentrations under different conditions of baseline stimulation (with KCl, adrenaline, caffeine, or histamine) and to α2-receptor stimulants or antagonists, or α1-receptor antagonists (imidazoline, yohimbine, rauwolscine, prazosin), and different conditions of Ca2+ depletion of the intracellular reservoir or extracellular stores. We measured the changes in isometric contraction tension with each addition or change in conditions. Results Dex enhanced the contraction induced by high-concentration KCl stimulation. Dex-induced enhancement of contraction induced by high-concentration KCl was completely suppressed by yohimbine and rauwolscine, which are α2-receptor antagonists, but not by prazosin. Dex, imidazoline, yohimbine, and rauwolscine reduced the increases in contraction tension induced by the receptor stimulant adrenaline. Dex suppressed the adrenaline-induced increases in contraction tension after depletion of the Ca2+ reservoir. In the absence of extracellular Ca2+, Dex suppressed the adrenaline- and histamine-induced increases in contraction tension but did not affect caffeine-induced increases. Conclusions Dex-enhanced, high-concentration KCl-induced contraction was mediated by α2-receptors. Adrenaline-induced contraction was suppressed by the α2-receptor stimulant Dex and α2-receptor antagonists yohimbine and rauwolscine, suggesting that the effect of Dex on adrenaline-induced contraction is attributable to its α2-receptor-blocking action. Dex inhibited receptor-activated Ca2+ channels and phosphatidylinositol-1,4,5-triphosphate-induced Ca2+ release but not Ca2+-induced Ca2+ release.
Collapse
Affiliation(s)
- Mami Chikuda
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan
| | - Kenichi Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan.
| |
Collapse
|
3
|
Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures. BIOMED RESEARCH INTERNATIONAL 2015; 2015:937148. [PMID: 26697497 PMCID: PMC4677161 DOI: 10.1155/2015/937148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
Abstract
Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses-a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin-were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.
Collapse
Affiliation(s)
- Jonathan C. Sedeyn
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Reilly D. Hobbs
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Eli C. Levin
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Robert G. Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
4
|
Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JXJ. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C373-83. [PMID: 24920677 DOI: 10.1152/ajpcell.00115.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for pulmonary arterial medial hypertrophy in patients with idiopathic pulmonary arterial hypertension (IPAH). Vascular smooth muscle cells (SMC) sense the blood flow shear stress through interstitial fluid driven by pressure or direct exposure to blood flow in case of endothelial injury. Mechanical stimulus can increase [Ca(2+)]cyt. Here we report that flow shear stress raised [Ca(2+)]cyt in PASMC, while the shear stress-mediated rise in [Ca(2+)]cyt and the protein expression level of TRPM7 and TRPV4 channels were significantly greater in IPAH-PASMC than in normal PASMC. Blockade of TRPM7 by 2-APB or TRPV4 by Ruthenium red inhibited shear stress-induced rise in [Ca(2+)]cyt in normal and IPAH-PASMC, while activation of TRPM7 by bradykinin or TRPV4 by 4αPDD induced greater increase in [Ca(2+)]cyt in IPAH-PASMC than in normal PASMC. The bradykinin-mediated activation of TRPM7 also led to a greater increase in [Mg(2+)]cyt in IPAH-PASMC than in normal PASMC. Knockdown of TRPM7 and TRPV4 by siRNA significantly attenuated the shear stress-mediated [Ca(2+)]cyt increases in normal and IPAH-PASMC. In conclusion, upregulated mechanosensitive channels (e.g., TRPM7, TRPV4, TRPC6) contribute to the enhanced [Ca(2+)]cyt increase induced by shear stress in PASMC from IPAH patients. Blockade of the mechanosensitive cation channels may represent a novel therapeutic approach for relieving elevated [Ca(2+)]cyt in PASMC and thereby inhibiting sustained pulmonary vasoconstriction and pulmonary vascular remodeling in patients with IPAH.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan; and
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Ramon J Ayon
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Kimberly A Smith
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Haiyang Tang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Departments of Medicine and Physiology, University of Arizona College of Medicine, Tucson, Arizona;
| |
Collapse
|
5
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
7
|
Yamamura A, Yamamura H, Zeifman A, Yuan JXJ. Activity of Ca -activated Cl channels contributes to regulating receptor- and store-operated Ca entry in human pulmonary artery smooth muscle cells. Pulm Circ 2011; 1:269-79. [PMID: 22034612 PMCID: PMC3198647 DOI: 10.4103/2045-8932.83447] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracellular Ca2+ plays a fundamental role in regulating cell functions in pulmonary arterial smooth muscle cells (PASMCs). A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) triggers pulmonary vasoconstriction and stimulates PASMC proliferation. [Ca2+]cyt is increased mainly by Ca2+ release from intracellular stores and Ca2+ influx through plasmalemmal Ca2+-permeable channels. Given the high concentration of intracellular Cl- in PASMCs, Ca2+-activated Cl-(ClCa) channels play an important role in regulating membrane potential and cell excitability of PASMCs. In this study, we examined whether activity of ClCa channels was involved in regulating [Ca2+]cyt in human PASMCs via regulating receptor- (ROCE) and store- (SOCE) operated Ca2+ entry. The data demonstrated that an angiotensin II (100 nM)-mediated increase in [Ca2+]cyt via ROCE was markedly attenuated by the ClCa channel inhibitors, niflumic acid (100 μM), flufenamic acid (100 μM), and 4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid (100 μM). The inhibition of ClCa channels by niflumic acid and flufenamic acid significantly reduced both transient and plateau phases of SOCE that was induced by passive depletion of Ca2+ from the sarcoplasmic reticulum by 10 μM cyclopiazonic acid. In addition, ROCE and SOCE were abolished by SKF-96365 (50 μM) and 2-aminoethyl diphenylborinate (100 μM), and were slightly decreased in the presence of diltiazem (10 μM). The electrophysiological and immunocytochemical data indicate that ClCa currents were present and TMEM16A was functionally expressed in human PASMCs. The results from this study suggest that the function of ClCa channels, potentially formed by TMEM16A proteins, contributes to regulating [Ca2+]cyt by affecting ROCE and SOCE in human PASMCs.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, Institute for Personalized Respiratory Medicine, Center for Cardiovascular Research, and Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
8
|
Barajas M, Andrade A, Hernandez-Hernandez O, Felix R, Arias-Montaño JA. Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: evidence for involvement of store-operated channels. J Neurosci Res 2009; 86:3456-68. [PMID: 18627030 DOI: 10.1002/jnr.21784] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glial and glia-derived cells express a variety of receptors for neurotransmitters and hormones, the majority of which evoke both Ca(2+) release from intracellular stores and Ca(2+) entry across the plasma membrane. We investigated the links between histamine H(1) receptor activation, Ca(2+) release from intracellular stores and Ca(2+) influx in human astrocytoma U373 MG cells. Histamine, through a H(1) receptor-mediated effect, evoked an increase in cytoplasmic free calcium concentration ([Ca(2+)](i)) that occurred in two phases: an initial, transient, increase owing to Ca(2+) mobilization from intracellular pools, and a second, sustained increase dependent on both Ca(2+) influx and continuous receptor occupancy. The characteristics of histamine-induced increases in [Ca(2+)](i) were similar to the capacitative entry evoked by emptying of the Ca(2+) stores with thapsigargine, and different from that observed when Ca(2+) influx was activated with OAG (1-oleoyl-2-acetyl-sn-glycerol), a diacylglycerol (DAG) analog. OAG application or increased endogenous DAG, resulting from DAG kinase inhibition, reduced the histamine-induced response. Furthermore, activation of the DAG target, protein kinase C (PKC), by TPA (12-O-tetradecanoyl 4beta-phorbol 13alpha-acetate) resulted in inhibition of the histamine-induced Ca(2+) response, an action prevented by PKC inhibitors. By using reverse transcriptase-polymerase chain reaction analysis, mRNAs for transient receptor potential channels (TRPCs) 1, 4, and 6 as well as for STIM1 (stromal-interacting molecule) and Orai1 were found to be expressed in the U373 MG cells, and confocal microscopy using specific antibodies revealed the presence of the corresponding proteins. Therefore, TRPCs may be candidate proteins forming store-operated channels in the U373 MG cell line. Further, our results confirm the involvement of PKC in the regulation of H(1) receptor-induced responses and point out to the existence of a feedback mechanism acting via PKC to limit the increase in [Ca(2+)](i).
Collapse
Affiliation(s)
- Margarita Barajas
- Departamento de Fisiología, Biofísica y Neurociencias, México, D.F., México
| | | | | | | | | |
Collapse
|
9
|
Sacks RS, Firth AL, Remillard CV, Agange N, Yau J, Ko EA, Yuan JXJ. Thrombin-mediated increases in cytosolic [Ca2+] involve different mechanisms in human pulmonary artery smooth muscle and endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1048-55. [PMID: 18836030 DOI: 10.1152/ajplung.90259.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin is a procoagulant inflammatory agonist that can disrupt the endothelium-lumen barrier in the lung by causing contraction of endothelial cells and promote pulmonary cell proliferation. Both contraction and proliferation require increases in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this study, we compared the effect of thrombin on Ca(2+) signaling in human pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells. Thrombin increased the [Ca(2+)](cyt) in both cell types; however, the transient response was significantly higher and recovered quicker in the PASMC, suggesting different mechanisms may contribute to thrombin-mediated increases in [Ca(2+)](cyt) in these cell types. Depletion of intracellular stores with cyclopiazonic acid (CPA) in the absence of extracellular Ca(2+) induced calcium transients representative of those observed in response to thrombin in both cell types. Interestingly, CPA pretreatment significantly attenuated thrombin-induced Ca(2+) release in PASMC; this attenuation was not apparent in PAEC, indicating that a PAEC-specific mechanism was targeted by thrombin. Treatment with a combination of CPA, caffeine, and ryanodine also failed to abolish the thrombin-induced Ca(2+) transient in PAEC. Notably, thrombin-induced receptor-mediated calcium influx was still observed in PASMC after CPA pretreatment in the presence of extracellular Ca(2+). Ca(2+) oscillations were triggered by thrombin in PASMC resulting from a balance of extracellular Ca(2+) influx and Ca(2+) reuptake by the sarcoplasmic reticulum. The data show that thrombin induces increases in intracellular calcium in PASMC and PAEC with a distinct CPA-, caffeine-, and ryanodine-insensitive release existing only in PAEC. Furthermore, a dynamic balance between Ca(2+) influx, intracellular Ca(2+) release, and reuptake underlie the Ca(2+) transients evoked by thrombin in some PASMC. Understanding of such mechanisms will provide an important insight into thrombin-mediated vascular injury during hypertension.
Collapse
Affiliation(s)
- Richard S Sacks
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, CA 92093-0725,USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang M, Ding X, Murray PA. Differential effects of intravenous anesthetics on capacitative calcium entry in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1007-12. [DOI: 10.1152/ajplung.00171.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37°C) on an inverted fluorescence microscope. Intracellular Ca2+concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+(2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated ( P < 0.05), whereas PKC inhibition potentiated ( P < 0.05), both peak and sustained CCE. TK inhibition attenuated ( P < 0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated ( P < 0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.
Collapse
|
11
|
Berra-Romani R, Raqeeb A, Avelino-Cruz JE, Moccia F, Oldani A, Speroni F, Taglietti V, Tanzi F. Ca2+ signaling in injured in situ endothelium of rat aorta. Cell Calcium 2008; 44:298-309. [PMID: 18276005 DOI: 10.1016/j.ceca.2007.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 11/20/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Physiological and Pharmacological Sciences, University of Pavia, V. Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hishinuma S, Saito M. Differential roles of ryanodine- and thapsigargin-sensitive intracellular CA2+ stores in excitation-contraction coupling in smooth muscle of guinea-pig taenia caeci. Clin Exp Pharmacol Physiol 2006; 33:1138-43. [PMID: 17184492 DOI: 10.1111/j.1440-1681.2006.04506.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. To explore roles of intracellular Ca(2+) stores in excitation-contraction coupling in smooth muscle, we examined the effects of ryanodine, a fixer of ryanodine receptor-Ca(2+) channels to an open state, and thapsigargin, a selective inhibitor of the Ca(2+) pump in the intracellular stores, on smooth muscle contraction in the presence and absence of extracellular Ca(2+) in guinea-pig taenia caeci. 2. In Ca(2+) -free solution, contractions induced by 0.1 mmol/L carbachol and 0.1 mmol/L histamine were reduced to approximately 65% of control by either 1 micro mol/L thapsigargin or 10 micro mol/L ryanodine. In contrast, caffeine-induced contraction was reduced to approximately 40% of control by ryanodine, but was not affected by thapsigargin. 3. In the presence of extracellular Ca(2+), thapsigargin slowly induced a large and sustained contraction. In contrast, ryanodine did not induce an apparent contraction, but increased the sensitivity of contractile responses to receptor agonists (carbachol, AHR-602 and histamine) or depolarizing high K(+) with no changes in the maximal contraction. 4. These results suggest that there are pharmacological and physiological differences between ryanodine- and thapsigargin-sensitive intracellular Ca(2+) stores in excitation-contraction coupling in smooth muscle, which may be responsible for their differential effects on the Ca(2+) -influx pathway.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan.
| | | |
Collapse
|
13
|
Takashima N, Fujioka A, Hayasaka N, Matsuo A, Takasaki J, Shigeyoshi Y. Gq/11-induced intracellular calcium mobilization mediates Per2 acute induction in Rat-1 fibroblasts. Genes Cells 2006; 11:1039-49. [PMID: 16923124 DOI: 10.1111/j.1365-2443.2006.00999.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phase resetting is one of the essential properties of circadian clocks that is required for the adjustment to a particular environment and the induction of Per1 and Per2 clock genes is believed to be a primary molecular event during this process. Although the intracellular signal transduction pathway underlying Per1 gene activation has been well characterized, the mechanisms that control Per2 up-regulation have not yet been elucidated. In our present study, we demonstrate that Gq/11 coupled receptors mediate serum-induced immediate rat Per2 (rPer2) transactivation in Rat-1 fibroblasts via intracellular Ca2+ mobilization. Stimulation of these cells with a high concentration of serum was found to rapidly increase the intracellular Ca2+ levels and strongly up-regulated rPer2 gene. rPer2 induction by serum stimulation was abrogated by intracellular Ca2+ chelation and depletion of intracellular Ca2+ store, which suggests that the calcium mobilization is necessary for the up-regulation of rPer2 gene. In addition, suppression of Gq/11 function was observed to inhibit both Ca2+ mobilization and rPer2 induction. Further, we demonstrated that endothelin-induced acute rPer2 transactivation via Gq/11-coupled endothelin receptors is also suppressed by a Gq/11 specific inhibitor. These findings together suggest that serum and endothelin utilize a common Gq/11-PLC mediated pathway for the transactivation of rPer2, which involves the mobilization of calcium from the intracellular calcium store.
Collapse
Affiliation(s)
- Naoyuki Takashima
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | |
Collapse
|