1
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Liu Y, Li H, Chai D, Lian B, Bai Z, Gao Y, Li J. LncRNA TCL6 regulates miR-876-5p/MYL2 axis to suppress breast cancer progression. Transl Oncol 2025; 53:102210. [PMID: 39874729 PMCID: PMC11810844 DOI: 10.1016/j.tranon.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
We explored the influence of the TCL6/miR-876-5p axis on breast cancer cell proliferation and migration. Using The Cancer Genome Atlas (TCGA) database, we evaluated the expression of TCL6 in breast cancer patients and studied its effects on cell proliferation, migration, and the cell cycle in vitro. The regulatory effect of miR-876-5p on myosin light chain-2 (MYL2) 3' untranslated regions (3'UTR) was analyzed through luciferase reporter assays, and rescue experiments confirmed TCL6-driven upregulation of MYL2 via a competitive RNA binding mechanism. Furthermore, we used a mouse subcutaneous tumor model to assess the impact of TCL6 knockdown combined with immune checkpoint blockade therapy. Our results indicated that higher TCL6 expression correlated with a favorable prognosis in breast cancer patients. In vitro experiments showed that knockdown of TCL6 and MYL2 enhanced breast cancer cell proliferation and migration. The luciferase and rescue assays demonstrated that TCL6 interacted with miR-876-5p to upregulate MYL2, thereby inhibiting cell proliferation and migration. Both in vitro and in vivo studies revealed that overexpression of TCL6 suppressed tumor growth and improved the response to PD-1 immunotherapy in tumor-bearing mice. This research highlights the pivotal role of lncRNA TCL6 in breast cancer development via a ceRNA network involving miR-876-5p and MYL2, suggesting a novel molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- YaoBang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - DaHai Chai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | | | - YaLi Gao
- Ningxia Medical University, Yinchuan 750004, China
| | - JinPing Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Xiong N, Wang Y, Jiang J. USP5 Promotes Head and Neck Squamous Cell Carcinoma Progression via mTOR Signaling Pathway. Cancer Med 2025; 14:e70752. [PMID: 40066708 PMCID: PMC11894462 DOI: 10.1002/cam4.70752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by limited prognostic markers and treatment options, contributing to high mortality rates. While Ubiquitin-specific peptidase 5 (USP5) has been implicated in various cancers, its role in HNSCC remains poorly understood. AIMS This study aims to investigate the role of USP5 in the progression of HNSCC and explore its potential as both a prognostic biomarker and a therapeutic target. MATERIALS & METHODS This work utilized single-cell transcriptomic analysis with the Scissor algorithm to identify distinct epithelial subpopulations, particularly focusing on the Stress subpopulation that exhibited significant upregulation of USP5. Validation was conducted using tissue microarray (TMA) analysis and immunohistochemistry (IHC) to compare USP5 expression levels in HNSCC tissues versus adjacent normal tissues. Furthermore, RNA interference (RNAi) experiments were performed to knock down USP5 expression, assessing its effects on tumor cell behavior, including proliferation, migration, and invasion, as well as the regulation of mTORC1 and NF-κB signaling pathways. RESULTS This study revealed that the Stress subpopulation, characterized by USP5 upregulation, was associated with enhanced tumor cell proliferation, migration, and invasion. TMA and IHC analyses confirmed that USP5 expression was significantly higher in HNSCC tissues compared to normal tissues, correlating with poor patient prognosis. Additionally, RNAi-mediated knockdown of USP5 led to reduced tumor cell activities and downregulation of the mTORC1 and NF-κB signaling pathways. DISCUSSION The findings suggest that USP5 plays a critical role in driving HNSCC progression. Its overexpression in aggressive tumor subpopulations and association with poor clinical outcomes highlight its potential utility as both a prognostic biomarker and a therapeutic target. The observed effects on cell behavior and oncogenic signaling pathways provide mechanistic insights into how USP5 for HNSCC therapy. CONCLUSIONS This study establishes USP5 as a key driver of HNSCC progression, underscoring its potential role in prognosis and therapy. Targeting USP5 may offer novel treatment strategies for HNSCC, addressing the urgent need for effective therapeutic interventions in this aggressive malignancy.
Collapse
Affiliation(s)
- Ni Xiong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yue Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of StomatologyGuanghua School of Stomatology, Sun Yat‐Sen UniversityGuangzhouChina
| | - Junhong Jiang
- Department of StomatologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| |
Collapse
|
4
|
Li Y, Qiu G, Zhou M, Chen Q, Liao X. USP5 Stabilizes IKBKG Through Deubiquitination to Suppress Ferroptosis and Promote Growth in Non-small Cell Lung Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01574-5. [PMID: 39397222 DOI: 10.1007/s12013-024-01574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Ferroptosis, a distinctive modality of cell mortality, has emerged as a critical regulator in non-small cell lung cancer (NSCLC). The deubiquitinating enzyme USP5 has established an oncogenic role in NSCLC. However, its biological relevance in NSCLC cell ferroptosis is currently unexplored. Expression analysis was performed by quantitative PCR (qPCR), immunohistochemistry (IHC) and immunoblotting. Animal xenograft studies were used to detect USP5's role in tumor growth. Cell proliferation, colony formation and apoptotic ratio were assessed by CCK-8, colony formation and flow cytometry assays, respectively. Cell ferroptosis was evaluated by gauging ROS, MDA, GSH, SOD, and Fe2+ contents. The USP5/IKBKG relationship and the ubiquitinated IKBKG were evaluated by Co-IP experiments. USP5 expression was elevated in human NSCLC. USP5 depletion suppressed NSCLC cell in vitro and in vivo growth and enhanced cell apoptosis. Moreover, USP5 depletion induced ferroptosis in NSCLC cell lines. Mechanistically, USP5 could enhance the stability of IKBKG protein through deubiquitination. Re-expression of IKBKG partially but significantly abolished USP5 depletion-mediated anti-growth and pro-ferroptosis effects in NSCLC cells. Our study demonstrates that USP5 suppresses ferroptosis and enhances growth in NSCLC cells by stabilizing IKBKG protein through deubiquitination. Targeting USP5 expression is an encouraging strategy to block NSCLC progression.
Collapse
Affiliation(s)
- Yufu Li
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Gan Qiu
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Min Zhou
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Qianzhi Chen
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Xiaoyong Liao
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China.
| |
Collapse
|
5
|
Li H, Li X, Du W. Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 2024; 52:107. [PMID: 38940326 PMCID: PMC11234250 DOI: 10.3892/or.2024.8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Xia Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| |
Collapse
|
6
|
Gao ST, Xin X, Wang ZY, Hu YY, Feng Q. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Mol Cell Probes 2024; 73:101944. [PMID: 38049041 DOI: 10.1016/j.mcp.2023.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|