1
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Böttcher RT, Strohmeyer N, Aretz J, Fässler R. New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain. Life Sci Alliance 2022; 5:5/4/e202101301. [PMID: 34996844 PMCID: PMC8761493 DOI: 10.26508/lsa.202101301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the β integrin cytosolic domain (β-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the β1-tail (β1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against β1-pT788/pT789 integrin do not detect specific β1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking β1-TT788/789DD integrin failed to activate β1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind β1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in β1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219:211512. [PMID: 33119040 PMCID: PMC7604772 DOI: 10.1083/jcb.202001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin β cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin β1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.
Collapse
Affiliation(s)
- Tanja M. Grimm
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nina I. Dierdorf
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Karin Betz
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Lehrstuhl Zelluläre Chemie, Fachbereich Chemie, Universität Konstanz, Konstanz, Germany
| | - Christoph Paone
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Correspondence to Christof R. Hauck:
| |
Collapse
|
4
|
Jin W. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications. Cancers (Basel) 2020; 12:cancers12051339. [PMID: 32456226 PMCID: PMC7281431 DOI: 10.3390/cancers12051339] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Src family kinases (SFKs) are non-receptor kinases that play a critical role in the pathogenesis of colorectal cancer (CRC). The expression and activity of SFKs are upregulated in patients with CRC. Activation of SFKs promotes CRC cell proliferation, metastases to other organs and chemoresistance, as well as the formation of cancer stem cells (CSCs). The enhanced expression level of Src is associated with decreased survival in patients with CRC. Src-mediated regulation of CRC progression involves various membrane receptors, modulators, and suppressors, which regulate Src activation and its downstream targets through various mechanisms. This review provides an overview of the current understanding of the correlations between Src and CRC progression, with a special focus on cancer cell proliferation, invasion, metastasis and chemoresistance, and formation of CSCs. Additionally, this review discusses preclinical and clinical strategies to improve the therapeutic efficacy of drugs targeting Src for treating patients with CRC.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
5
|
Kwok ML, Chan KM. Functional characterization of copper transporters zCtr1, zAtox1, zAtp7a and zAtp7b in zebrafish liver cell line ZFL. Metallomics 2019; 11:1532-1546. [PMID: 31469368 DOI: 10.1039/c9mt00159j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper (Cu) is an essential element for all organisms, serving as an enzyme cofactor to maintain cellular activity and vitality. However, Cu homeostasis must be maintained at the physiological and cellular levels as Cu ions can be highly toxic. In mammals, ATP7A is expressed in most tissues, but relatively lower expression is found in the liver, and is responsible for the intestinal uptake of Cu, while ATP7B is highly expressed in the liver, kidneys and placenta, and is responsible for removal of Cu in the liver. CTR1 and ATOX1 are responsible for cellular Cu uptake and intracellular Cu transport, respectively. Here, using a zebrafish liver cell line (ZFL), we studied the cellular functions of four zebrafish Cu transporters. In zebrafish, zAtp7a is expressed mainly in the liver and zAtp7b is expressed mainly in the intestines, different from that of humans which have a high ATP7b level in the liver and high ATP7a level in the intestines. We here found that zctr1 or zatox1 overexpression increased Cu accumulation in ZFL cells. Moreover, zctr1 overexpression made ZFL cells more sensitive to Cu and Zn exposure, and overexpression of zatox1 or zatp7b increased Cu uptake and Cu tolerance in ZFL cells. Overexpression of zatp7a made ZFL cells more sensitive to Zn. Taken together, our findings suggest that zatp7b is responsible for Cu export despite its expression level being much lower than zatp7a in ZFL cells.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
6
|
Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, Templeman KL, Hannachi EI, Gooch KJ, Sarang-Sieminski AL, García AJ, Weaver VM. α5β1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 2017; 28:2958-2977. [PMID: 28877984 PMCID: PMC5662256 DOI: 10.1091/mbc.e17-02-0126] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Fibronectin-ligated α5β1 integrin promotes malignancy by inducing tissue tension. Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5β1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5β1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5β1 integrin and FN in many tumors and their correlation with cancer aggression.
Collapse
Affiliation(s)
- Y A Miroshnikova
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G I Rozenberg
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - L Cassereau
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - M Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - J K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G Ou
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - K L Templeman
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - E-I Hannachi
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - K J Gooch
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A L Sarang-Sieminski
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - V M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143 .,Department of Anatomy and Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
7
|
Su C, Zhang B, Liu W, Zheng H, Sun L, Tong J, Wang T, Jiang X, Liang H, Xue L, Zhang Q. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation. Oncol Rep 2016; 36:1048-54. [DOI: 10.3892/or.2016.4841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
|
8
|
Basson MD, Zeng B, Downey C, Sirivelu MP, Tepe JJ. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β. Mol Oncol 2015; 9:513-526. [PMID: 25454347 PMCID: PMC4487881 DOI: 10.1016/j.molonc.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/31/2023] Open
Abstract
Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0-80 mmHg increased extracellular pressure for 24 h on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure-stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca(2+) channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca(2+)]i via Cav3.3, driving a PKC-β- IKK- IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors.
Collapse
Affiliation(s)
- Marc D Basson
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA.
| | - Bixi Zeng
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Christina Downey
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Madhu P Sirivelu
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Jetze J Tepe
- Department of Pharmacology, Michigan State University, 1355 Bogue Street, B440 Life Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Leung KP, Chen D, Chan KM. Understanding copper sensitivity in zebrafish (Danio rerio) through the intracellular localization of copper transporters in a hepatocyte cell-line ZFL and the tissue expression profiles of copper transporters. Metallomics 2014; 6:1057-67. [PMID: 24658744 DOI: 10.1039/c3mt00366c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish (Danio rerio) is a freshwater fish species of Cyprinidae known for its copper (Cu) intolerance, yet the underlying mechanisms of the sensitivity remain unclear. In this study, we examined the highly conserved molecular machineries in the copper handling system, namely ATOX1, ATP7A, ATP7B, and CTR1, by profiling their gene expression patterns among tissues before and after acute waterborne Cu exposure, and investigating their intracellular localization patterns using a zebrafish hepatocyte cell line, ZFL. We found that ATP7B was weak in its response toward Cu exposure to elicit its copper efflux function. Tissue distribution of these Cu transporters, however, revealed a distinct expression profile compared with mammals and other fish, particularly ATP7A, which unlike ATP7B was highly expressed in the liver, while ATP7B, not ATP7A, was specifically expressed in the intestine. ATOX1 transcript expression was also found to be significantly up-regulated with acute waterborne Cu, in contrast to the decreased expression found in other fish. A possible explanation for the Cu sensitivity in zebrafish is discussed.
Collapse
Affiliation(s)
- King Pong Leung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region, China.
| | | | | |
Collapse
|
10
|
Uotila LM, Jahan F, Soto Hinojosa L, Melandri E, Grönholm M, Gahmberg CG. Specific phosphorylations transmit signals from leukocyte β2 to β1 integrins and regulate adhesion. J Biol Chem 2014; 289:32230-32242. [PMID: 25278023 DOI: 10.1074/jbc.m114.588111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of integrins expressed on leukocytes must be controlled precisely, and members of different integrin subfamilies have to act in concert to ensure the proper traffic of immune cells to sites of inflammation. The activation of β2 family integrins through the T cell receptor or by chemokines leads to the inactivation of very late antigen 4. The mechanism(s) of this cross-talk has not been known. We have now elucidated in detail how the signals are transmitted from leukocyte function-associated antigen 1 and show that, after its activation, the signaling involves specific phosphorylations of β2 integrin followed by interactions with cytoplasmic signaling proteins. This results in loss of β1 phosphorylation and a decrease in very late antigen 4 binding to its ligand vascular cell adhesion molecule 1. Our results show how a member of one integrin family regulates the activity of another integrin. This is important for the understanding of integrin-mediated processes.
Collapse
Affiliation(s)
- Liisa M Uotila
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Farhana Jahan
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Laura Soto Hinojosa
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Emiliano Melandri
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Mikaela Grönholm
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 2014; 344:62-73. [DOI: 10.1016/j.canlet.2013.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
|
12
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
13
|
Rousseau MC, Hsu RYC, Spicer JD, McDonald B, Chan CHF, Perera RM, Giannias B, Chow SC, Rousseau S, Law S, Ferri LE. Lipopolysaccharide-induced toll-like receptor 4 signaling enhances the migratory ability of human esophageal cancer cells in a selectin-dependent manner. Surgery 2013; 154:69-77. [PMID: 23809486 DOI: 10.1016/j.surg.2013.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Esophageal cancer is an aggressive malignancy, and emerging data suggest that postoperative infections may promote cancer progression. Systemic exposure to lipopolysaccharide (LPS), a Gram-negative bacterial antigen involved in such infections, has been shown to increase cancer cell adhesion to the hepatic sinusoids in vivo. We investigated the direct impact of LPS on the migratory ability of esophageal cancer cells via the LPS receptor toll-like receptor 4 (TLR4). METHODS Human esophageal squamous carcinoma cell lines and immortalized normal esophageal mucosa cells were tested for TLR4 surface expression by reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. TLR4 signaling in response to LPS stimulation was tested in these cells by measuring p38 MAP kinase phosphorylation on Western blot. The impact of TLR4 signaling was measured by static adhesion assays in vitro and on early in vivo migration by intravital microscopy of the liver. RESULTS Upon LPS stimulation, phosphorylation of p38 was detected in the human esophageal cancer cells HKESC-2. Also, LPS-stimulated HKESC-2 cells showed a twofold increased adhesion to fibronectin and to hepatic sinusoidal endothelium. These effects were abolished by TLR4 inhibition using the small-molecule inhibitor eritoran. Adhesion to fibronectin and hepatic sinusoidal endothelium was also diminished by blockade of p38 phosphorylation and inhibitors of selectin-selectin ligand binding. CONCLUSION LPS can increase the migratory ability of human esophageal cancer cells by increasing their adhesive properties through TLR4 signaling and selectin ligands. TLR4, p38, and selectin blockade may therefore prove to be a new therapeutic strategy for this aggressive malignancy.
Collapse
Affiliation(s)
- Mathieu C Rousseau
- LD McLean Surgical Research Laboratories, Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patterson K, Yang R, Zeng B, Song B, Wang S, Xi N, Basson M. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2013; 105:40-47. [PMID: 23823222 PMCID: PMC3699737 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
Affiliation(s)
- Kevin C. Patterson
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Bixi Zeng
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Shouye Wang
- Department of Surgery, Michigan State University, East Lansing, Michigan
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Marc D. Basson
- Department of Surgery, Michigan State University, East Lansing, Michigan
| |
Collapse
|
15
|
Abstract
Initial efforts at biologic skin replacement strategies were mainly directed toward keratinocyte regeneration and epithelial replacement. It soon became evident that without a good dermal scaffold, the long-term efficacy of epithelial replacement was very limited. Further studies have focused on matrix replacement predominantly involving collagen frameworks with or without cellular additions. The fibroblast is central to the process of dermal regeneration and to the success of biologic matrix design. The sequence of cellular focal adhesion, integrin phosphorylated activation, intracellular and extracellular signaling, cytoskeletal activation, changes in cell morphology, and cytokine growth factor interaction are all important in influencing cell proliferation, cell spreading, neocollagenesis, and collagen translocation. A basic acellular matrix with chemical composition and correct physical structure (pore size and resistance) that takes cognizance of this sequence of matrix deposition and fibroblast functionality should be successful in promoting intrinsic healing and dermal replacement.
Collapse
|
16
|
Hsu RYC, Chan CHF, Spicer JD, Rousseau MC, Giannias B, Rousseau S, Ferri LE. LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 2011; 71:1989-98. [PMID: 21363926 DOI: 10.1158/0008-5472.can-10-2833] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious complications resulting from resection of colorectal cancer (CRC) elevates the risk of cancer recurrence and metastasis, but the reason for this risk relationship is unknown. Defining the mechanisms responsible may offer opportunities to improve outcomes in a majority of patients whose tumors are resected as part of their therapy. The complex formed between Toll receptor TLR4 and myeloid differentiation factor MD2 defines a major cell surface receptor for lipopolysaccharide (LPS), a gram-negative bacterial antigen that has been implicated in infectious complications after CRC resection. As the TLR4/MD2 complex is expressed on CRC cells, we hypothesized that LPS may promote liver metastasis in CRC by stimulating TLR4 signaling. In support of this hypothesis, we report here that LPS enhances liver metastasis of human CRC cells that express TLR4/MD2 after intrasplenic graft of immunocompromised nude mice. Compared with TLR4 nonexpressing, nonmetastatic CRC cells, we observed increased in vitro adherence to different extracellular matrices and human umbilical vein endothelial cells (HUVEC). Furthermore, we observed an increased likelihood of in vivo capture within hepatic sinusoids after LPS treatment. No differences were apparent in phosphorylation of p38 and MAPK isoforms, but in metastatic CRC cells expressing surface TLR4 treatment with LPS increased Ser473 phosphorylation of AKT kinase. We showed that enhanced adherence elicited by LPS in these cells could be blocked at three different levels, using Eritoran (TLR4 small molecule antagonist), PI-103 (PI3K inhibitor), or anti-β1 integrin blocking antibodies. Taken together, the results indicate that stimulation of the TLR4/MD2 complex by LPS activates PI3K/AKT signaling and promotes downstream β1 integrin function, thereby increasing the adhesiveness and metastatic capacity of CRC cells. Our findings suggest that inhibiting LPS-induced TLR4 signaling could improve therapeutic outcomes by preventing cancer metastasis during the perioperative period of CRC resection.
Collapse
Affiliation(s)
- Rich Y C Hsu
- LD McLean Surgical Research Laboratories, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Cotter EJ, Chew N, Powderly WG, Doran PP. HIV type 1 alters mesenchymal stem cell differentiation potential and cell phenotype ex vivo. AIDS Res Hum Retroviruses 2011; 27:187-99. [PMID: 20929345 DOI: 10.1089/aid.2010.0114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An increased incidence of bone and lipid toxicities is associated with HIV-1 infection and its treatment. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into both osteoblasts (OB) and adipocytes (AC). We hypothesize that the interaction of MSC and HIV-1 underlie these toxicities. Serum was collected from uninfected control and HIV-infected, antiviral-naive patients. Sera were divided into three groups: HIV-negative sera (n = 5), HIV-positive low viral load (LVL) (VL range 120; 4000, n = 5) or high viral load (HVL) (VL range 100,000; 500,000, n = 5). MSCs were exposed to these sera (5%) in an adipogenic/osteogenic condition and in nondifferentiating conditions in acute and chronic exposure models. Markers of adipogenesis/osteogenesis were examined in both MSCs induced to differentiated and nondifferentiating cells. Sera from HVL HIV-1-infected individuals induced a clear proadipogenic phenotype, as evidenced by an increase in adipocyte formation and the induction of increased expression of adipogenic markers including LPL and PPARγ. Both CD4 receptor blockade and treatment with the antiretroviral AZT attenuated these proadipogenic effects, suggesting that an infection event may underlie the observed phenomena. Finally, inhibition of COUP TF-1 by HIV-1 TAT was identified as a potential molecular mechanism for these effects. These results suggest that HIV-1 directly interacts with and may infect MSCs resulting in alterations of their differentiation potential, findings that significantly enhance our understanding of HIV-1-associated bone and fat toxicities.
Collapse
Affiliation(s)
- Eoin J. Cotter
- Clinical Research Center, University College Dublin, Dublin, Ireland
| | - Nicholas Chew
- Clinical Research Center, University College Dublin, Dublin, Ireland
| | - William G. Powderly
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Peter P. Doran
- Clinical Research Center, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Perry BC, Wang S, Basson MD. Extracellular pressure stimulates adhesion of sarcoma cells via activation of focal adhesion kinase and Akt. Am J Surg 2010; 200:610-614. [PMID: 21056138 PMCID: PMC3837573 DOI: 10.1016/j.amjsurg.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND The effect of extracellular pressure on adhesion and adhesiogenic focal adhesion kinase (FAK) and Akt signaling in sarcomas was investigated. METHODS Human sarcoma cells (HT-1080 fibrosarcoma, KHOS-240S osteosarcoma, and A-673 rhabdomyosarcoma) were subjected to increased pressure followed by adhesion assay. Two cell lines were pretreated with the FAK inhibitor 1,2,4,5-benzenetetraamine tetrahydrochloride (Y15) or Akt IV inhibitor, followed by Western analysis for activated FAK and Akt. Parallel studies were conducted in cells from a resected human fibrous histiosarcoma. RESULTS Pressure increased adhesion in all 3 sarcoma lines and primary histosarcoma cells by 7% to 18% (n = 6; P < .01 each). Pressure activated FAK and Akt (n = 5; P < .01). Inhibiting FAK or Akt inhibited FAK or Akt phosphorylation and the stimulation of adhesion by increased pressure (n = 5 each; P < .01 each). CONCLUSIONS Pressure increases sarcoma cell adhesiveness via Akt and FAK. Perioperative manipulation or forces in lymphatic or circulatory systems may potentiate local recurrence or distant metastasis.
Collapse
Affiliation(s)
- Brandon C Perry
- Department of Surgery, Michigan State University, Lansing, 48912, USA
| | | | | |
Collapse
|
19
|
Brown J, Wallet MA, Krastins B, Sarracino D, Goodenow MM. Proteome bioprofiles distinguish between M1 priming and activation states in human macrophages. J Leukoc Biol 2010; 87:655-62. [PMID: 20007246 DOI: 10.1189/jlb.0809570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophage activation is a dynamic process that results in diverse functional outcomes ranging from immunoregulation to inflammation. The proinflammatory, or M1, response is a complex, bimodal progression composed of a "prime," classically through IFN-gamma, and "trigger," such as LPS. To characterize the physiological response of M1 activation, a systems biology approach was applied to determine the intracellular proteome bioprofiles of IFN-gamma-and LPS-treated primary human macrophages. Our goal was to develop intracellular proteomic fingerprints to serve as novel correlates of macrophage priming and/or activation to augment the existing approaches of analyzing secreted cytokines and cell-surface protein expression. The majority of the proteome, approximately 78%, remained stable during activation, representing the core proteome. In contrast, three distinct patterns defined response proteomes: IFN-gamma-specific, LPS-specific, or IFN-gamma- and LPS-shared or M1-specific. Although steady-state expression levels of proteins involved in energy metabolism and immune response were increased during priming and triggering, changes in protein and fatty acid metabolism, signaling, and transport pathways were most apparent. Unique proteomic fingerprints distinguish among IFN-gamma-specific, LPS-specific, or M1-specific activation states and provide a clear molecular, archeological profile to infer recent history of cells, as well as correlates for chronic macrophage activation in health and disease.
Collapse
Affiliation(s)
- Joseph Brown
- Department of Pathology Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610-3633, USA
| | | | | | | | | |
Collapse
|
20
|
Bhalla S, Shiratsuchi H, Craig DH, Basson MD. beta(1)-integrin mediates pressure-stimulated phagocytosis. Am J Surg 2009; 198:611-616. [PMID: 19887187 PMCID: PMC2774901 DOI: 10.1016/j.amjsurg.2009.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Extracellular pressure alterations in infection, inflammation, or positive pressure ventilation may influence macrophage phagocytosis. We hypothesized that pressure modulates beta1-integrins to stimulate phagocytosis. METHODS We assayed fibroblast phagocytosis of fluorescent latex beads at ambient or 20 mm Hg increased pressure, and macrophage integrin phosphorylation by Western blot. RESULTS Pressure did not alter phagocytosis in beta(1)-integrin null GD25 fibroblasts, but stimulated phagocytosis in fibroblasts expressing wild-type beta(1)-integrin. In phorbol myristate acetate-differentiated THP-1 macrophages, pressure stimulated beta(1)-integrin T788/789 phosphorylation, but not S785 phosphorylation. Furthermore, pressure stimulated phagocytosis in cells expressing an inactivating S785A point mutation or a T788D substitution to mimic a constitutively phosphorylated threonine, but not in cells expressing an inactivating TT788/9AA mutation. CONCLUSIONS The effects of pressure on phagocytosis are not limited to macrophages but generalize to other phagocytic cells. These results suggest that pressure stimulates phagocytosis via increasing beta(1)-integrin T789 phosphorylation. Interventions that target beta(1)-integrin threonine 789 phosphorylation may modulate phagocytic function.
Collapse
Affiliation(s)
- Sean Bhalla
- Department of Surgery, John D Dingell VA Medical Center, Detroit, MI, USA
| | | | | | | |
Collapse
|
21
|
The roles of platelet GPIIb/IIIa and alphavbeta3 integrins during HeLa cells adhesion, migration, and invasion to monolayer endothelium under static and dynamic shear flow. J Biomed Biotechnol 2009; 2009:829243. [PMID: 19888429 PMCID: PMC2771158 DOI: 10.1155/2009/829243] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/22/2009] [Accepted: 08/03/2009] [Indexed: 01/19/2023] Open
Abstract
During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including endothelial cells and platelets. Mechanisms mediating tumor cell adhesion, migration, and metastasis to vessel wall under flow condition are largely unknown. The aim of this study was to investigate the potential roles of GPIIb/IIIa and αvβ3 integrins underlying the HeLa-endothelium interaction in static and dynamic flow conditions. HeLa cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of transmigrated or invaded HeLa cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited HeLa cell transmigration. Interestingly, the presence of endothelial cells had significant effect on HeLa cell migration regardless of static or cocultured flow condition. The adhesion capability of HeLa cells to endothelial monolayer was also significantly affected by GPIIb/IIIa and αvβ3 integrins. The arrested HeLa cells increased nearly 5-fold in the presence of thrombin-activated platelets at shear stress condition (1.84 dyn/cm2 exposure for 1 hour) than the control (static). Our findings showed that GPIIb/IIIa and αvβ3 integrins are important mediators in the pathology of cervical cancer and provide a molecular basis for the future therapy, and the efficient antitumor benefit should target multiple receptors on tumor cells and platelets.
Collapse
|
22
|
Flanigan TL, Craig DH, Gayer CP, Basson MD. The effects of increased extracellular deformation, pressure, and integrin phosphorylation on fibroblast migration. J Surg Res 2009; 156:103-109. [PMID: 19555977 PMCID: PMC2730954 DOI: 10.1016/j.jss.2009.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/13/2009] [Accepted: 03/22/2009] [Indexed: 01/27/2023]
Abstract
Wound healing requires fibroblast migration. Increased pressure slows migration and ulcer healing. Pressure also induces beta1 integrin phosphorylation. We hypothesized that beta1 phosphorylation influences cell adhesion and migration. We compared the effects of increased pressure on the adhesion and motility of GD25 beta1-integrin null fibroblasts transfected with wild-type beta1A-integrin, S785A or TT788/9AA (phosphorylation-deficient), or T788D (constitutively phosphomimetic) mutants. GD25 beta1 null cells adhered less than wild type beta1A cells, suggesting adherence by non-integrin mechanisms. Preventing Ser-785 or Thr 788/789 phosphorylation reduced adhesion, suggesting that phosphorylation regulates adhesiveness. Substituting Asp for Thr788 stimulated adhesion on both substrates. Pressure decreased migration in all lines and on all matrixes, the most in wild type beta1A integrin cells and only slightly in beta1A TT788/9AA cells. In comparison, another physical force, repetitive deformation, increased migration in the beta1A integrin T788D, S785A, and wild type cells on fibronectin, and decreased migration on collagen. Deformation did not affect the migration of GD25 beta1-integrin null or TT788/9AA cells. Extracellular signal-regulated kinase (ERK) blockade neither altered basal migration nor prevented pressure inhibition, while the cellular deformation response on fibronectin was altered. beta1-Integrin phosphorylation regulates cellular adhesion and the deformation effects on motility. The pressure-induced motility response is independently regulated.
Collapse
Affiliation(s)
- Thomas L Flanigan
- Department of Surgery, John D Dingell VA Medical Center, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Increasing evidence suggests tumor cell exposure to mechanical stimuli during the perioperative period as well as throughout the normal disease process may have a discernable impact on tumor metastasis and patient outcome. In vitro studies have demonstrated that transient exposure to increased extracellular pressure and shear forces modulates integrin binding affinity and stimulates cancer cell adhesion through a cytoskeleton- and focal adhesion complex-dependent signaling mechanism. More prolonged exposure to elevated pressures stimulates tumor cell proliferation by a distinct signaling pathway. Whether pressure effects on cell adhesion and proliferation pose biological ramifications in vivo remained unknown. We recently reported that pressure activation of malignant cells does indeed have a biological impact on surgical wound implantation, tumor development and tumor-free survival in a murine colon tumor model. Moreover, this effect can be disrupted by preoperative administration of colchicine. Taken together with previous work from our laboratory and others, these findings suggest that further elucidation of the mechanical signaling pathways governing pressure-stimulated tumor cell adhesion and proliferation may identify novel therapeutic targets for the treatment and prevention of tumor metastasis.
Collapse
Affiliation(s)
- David H. Craig
- Department of Surgery; Michigan State University; Lansing, Michigan USA
| | - Marc D. Basson
- Department of Surgery; Michigan State University; Lansing, Michigan USA
| |
Collapse
|