1
|
Claassen WJ, Baelde RJ, Galli RA, de Winter JM, Ottenheijm CAC. Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am J Physiol Cell Physiol 2023; 325:C60-C68. [PMID: 37212548 PMCID: PMC10281779 DOI: 10.1152/ajpcell.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.
Collapse
Affiliation(s)
- Wout J Claassen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Rianne J Baelde
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Ricardo A Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Josine M de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
2
|
Nagy L, Kovács Á, Bódi B, Pásztor ET, Fülöp GÁ, Tóth A, Édes I, Papp Z. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. Br J Pharmacol 2015; 172:4506-4518. [PMID: 26140433 DOI: 10.1111/bph.13235] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/18/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Omecamtiv mecarbil (OM) is a novel cardiac myosin activator drug for inotropic support in systolic heart failure. Here we have assessed the concentration-dependent mechanical effects of OM in permeabilized cardiomyocyte-sized preparations and single skeletal muscle fibres of Wistar-Kyoto rats under isometric conditions. EXPERIMENTAL APPROACHES Ca2+ -dependent active force production (Factive ), its Ca2+ sensitivity (pCa50 ), the kinetic characteristics of Ca2+ -regulated activation and relaxation, and Ca2+ -independent passive force (Fpassive ) were monitored in Triton X-100-skinned preparations with and without OM (3nM-10 μM). KEY RESULTS In permeabilized cardiomyocytes, OM increased the Ca2+ sensitivity of force production (ΔpCa50 : 0.11 or 0.34 at 0.1 or 1 μM respectively). The concentration-response relationship of the Ca2+ sensitization was bell-shaped, with maximal effects at 0.3-1 μM OM (EC50 : 0.08 ± 0.01 μM). The kinetics of force development and relaxation slowed progressively with increasing OM concentration. Moreover, OM increased Fpassive in the cardiomyocytes with an apparent EC50 value of 0.26 ± 0.11 μM. OM-evoked effects in the diaphragm muscle fibres with intrinsically slow kinetics were largely similar to those in cardiomyocytes, while they were less apparent in muscle fibres with fast kinetics. CONCLUSIONS AND IMPLICATIONS OM acted as a Ca2+ -sensitizing agent with a downstream mechanism of action in both cardiomyocytes and diaphragm muscle fibres. The mechanism of action of OM is connected to slowed activation-relaxation kinetics and at higher OM concentrations increased Fpassive production.
Collapse
Affiliation(s)
- L Nagy
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Á Kovács
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - B Bódi
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - E T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Á Fülöp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Tóth
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - I Édes
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Z Papp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
EMD 57033 partially reverses ventilator-induced diaphragm muscle fibre calcium desensitisation. Pflugers Arch 2009; 459:475-83. [PMID: 19798510 DOI: 10.1007/s00424-009-0744-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
In critically ill patients, ventilator-induced diaphragm muscle fibre dysfunction (VIDD) contributes to weaning problems, increasing hospitalisation time and related costs. VIDD pathophysiology remains partially unknown, especially the characterisation of the contractile dysfunction. In the present study, it was hypothesised that Ca(2+) activation is affected during VIDD. Ca(2+) sensitivity of contraction was therefore evaluated at the single skinned diaphragm muscle fibre level in piglets randomised into sham operation or 5-day mechanical ventilation. Ca(2+) sensitivities of force and stiffness in fibres were significantly impaired in all mechanically ventilated piglets compared with sham-operated controls, suggesting a less efficient Ca(2+) activation of cells, i.e. a lower relative number of strongly attached cross-bridges for each sub-maximal concentration of Ca(2+). In an attempt to test whether this negative effect of VIDD is reversible, single muscle fibres were exposed to the EMD 57033 Ca(2+) sensitiser. EMD 57033 (30 microM) improved the Ca(2+) sensitivity of force and stiffness in fibres from animals that were mechanically ventilated for 5 days as well as in sham-operated piglets. Thus, EMD 57033 partly restored the Ca(2+) activation of cells, reducing VIDD. This finding offers a strong basis for evaluating the effect of Ca(2+) sensitisers on diaphragm function in vivo.
Collapse
|
4
|
Ochala J, Li M, Ohlsson M, Oldfors A, Larsson L. Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation. J Physiol 2008; 586:2993-3004. [PMID: 18420702 DOI: 10.1113/jphysiol.2008.153650] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A novel E41K beta-tropomyosin (beta-Tm) mutation, associated with congenital myopathy and muscle weakness, was recently identified in a woman and her daughter. In both patients, muscle weakness was coupled with muscle fibre atrophy. It remains unknown, however, whether the E41K beta-Tm mutation directly affects regulation of muscle contraction, contributing to the muscle weakness. To address this question, we studied a broad range of contractile characteristics in skinned muscle fibres from the two patients and eight healthy controls. Results showed decreases (i) in speed of contraction at saturated Ca(2+) concentration (apparent rate constant of force redevelopment (k(tr)) and unloaded shortening speed (V(0))); and (ii) in contraction sensitivity to Ca(2+) concentration, in fibres from patients compared with controls, suggesting that the mutation has a negative effect on contractile function, contributing to the muscle weakness. To investigate whether these negative impacts are reversible, we exposed skinned muscle fibres to the Ca(2+) sensitizer EMD 57033. In fibres from patients, 30 mum of EMD 57033 (i) had no effect on speed of contraction (k(tr) and V(0)) at saturated Ca(2+) concentration but (ii) increased Ca(2+) sensitivity of contraction, suggesting a potential therapeutic approach in patients carrying the E41K beta-Tm mutation.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Neuroscience, Clinical Neurophysiology, University Hospital, Entrance 85, 3rd floor, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
5
|
Soergel DG, Georgakopoulos D, Stull LB, Kass DA, Murphy AM. Augmented systolic response to the calcium sensitizer EMD-57033 in a transgenic model with troponin I truncation. Am J Physiol Heart Circ Physiol 2004; 286:H1785-92. [PMID: 14693678 DOI: 10.1152/ajpheart.00170.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial stunning is a form of acute reversible cardiac dysfunction that occurs after brief periods of ischemia and reperfusion. In several animal models, stunning is associated with proteolytic truncation of troponin I (TnI). Mice expressing the same proteolytic TnI fragment [TnI-(1–193)] demonstrate cardiac depression with a decreased maximal calcium-activated tension. We therefore hypothesized preferential improvement in mice expressing TnI-(1–193) treated with the calcium-sensitizing drug EMD-57033. TnI-(1–193) and nontransgenic myofibrils exhibited significant sensitization to calcium in Mg-ATPase assays after EMD-57033 exposure. However, only transgenic myofibrils exhibited an increase in maximal activity ( P = 0.023). EMD-57033 also increased maximal calcium-activated force in TnI-(1–193) muscle, such that it was comparable to nontransgenic cardiac muscle. EMD-57033 enhanced in vivo systolic function modestly in controls but had a marked effect in transgenic mice, with an almost threefold greater leftward shift of the end-systolic pressure-volume relation ( P = 0.0005). These data indicate a targeted efficacy of EMD-57033 in offsetting the contractile defect in TnI-(1–193) mice, and this may have therapeutic implications in models displaying this myofilament defect.
Collapse
Affiliation(s)
- David G Soergel
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
6
|
Cazorla O, Lacampagne A, Fauconnier J, Vassort G. SR33805, a Ca2+ antagonist with length-dependent Ca2+ -sensitizing properties in cardiac myocytes. Br J Pharmacol 2003; 139:99-108. [PMID: 12746228 PMCID: PMC1573823 DOI: 10.1038/sj.bjp.0705221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. This study examined the effects of SR33805, a fantofarone derivative with reported strong Ca(2+) -antagonistic properties, on the contractile properties of intact and skinned rat ventricular myocytes. 2. On intact cells loaded with the Ca(2+)-fluorescent indicator Indo-1, the application of low concentrations of SR33805 enhanced the amplitude of unloaded cell shortening and decreased the duration of cell shortening. Amplitude of the Ca(2+) transient was also decreased. 3. These effects were accompanied with a shortening of the action potential and a dose-dependent blockade of L-type calcium current (IC(50)=2.4 x 10(-8) M). 4. On skinned cardiac cells, the application of a low SR33805 concentration (10(-8) M) induced a significant increase in maximal Ca(2+)-activated force at the two-tested sarcomere lengths (SLs), 1.9 and 2.3 microm. 5. The application of a larger dose of SR33805 (10(-6)-10(-5) M) induced a significant leftward shift of the tension-pCa relation that accounts for Ca(2+)-sensitization of the myofilaments, particularly at 2.3 microm SL. 6. In conclusion, despite its strong Ca(2+)-antagonistic properties SR33805 increases cardiac cell contractile activity as a consequence of its Ca(2+)-sensitizing effects. These effects are attributable to both an increase in the maximal Ca(2+)-activated force and a length-dependent Ca(2+)-sensitization.
Collapse
Affiliation(s)
- Olivier Cazorla
- INSERM U-390, Unite de Recherches de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Alain Lacampagne
- INSERM U-390, Unite de Recherches de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Jeremy Fauconnier
- INSERM U-390, Unite de Recherches de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Guy Vassort
- INSERM U-390, Unite de Recherches de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
- Author for correspondence:
| |
Collapse
|