• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593696)   Today's Articles (1104)   Subscriber (49324)
For: Puttaparthi K, Markovich D, Halaihel N, Wilson P, Zajicek HK, Wang H, Biber J, Murer H, Rogers T, Levi M. Metabolic acidosis regulates rat renal Na-Si cotransport activity. Am J Physiol 1999;276:C1398-404. [PMID: 10362603 DOI: 10.1152/ajpcell.1999.276.6.c1398] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Number Cited by Other Article(s)
1
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018;19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]  Open
2
Dawson PA, Richard K, Perkins A, Zhang Z, Simmons DG. Review: Nutrient sulfate supply from mother to fetus: Placental adaptive responses during human and animal gestation. Placenta 2017;54:45-51. [PMID: 28089504 DOI: 10.1016/j.placenta.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 01/20/2023]
3
Whittamore JM, Hatch M. Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat. Urolithiasis 2015;43:489-99. [DOI: 10.1007/s00240-015-0801-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
4
Biber J, Murer H, Mohebbi N, Wagner C. Renal Handling of Phosphate and Sulfate. Compr Physiol 2014;4:771-92. [DOI: 10.1002/cphy.c120031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
5
Markovich D. Na+–sulfate cotransporter SLC13A1. Pflugers Arch 2013;466:131-7. [DOI: 10.1007/s00424-013-1388-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
6
Markovich D. Sodium-sulfate/carboxylate cotransporters (SLC13). CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177988 DOI: 10.1016/b978-0-12-394316-3.00007-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
7
Bergeron M, Clémençon B, Hediger M, Markovich D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol Aspects Med 2013;34:299-312. [DOI: 10.1016/j.mam.2012.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022]
8
Markovich D. Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda) 2012;27:7-14. [PMID: 22311966 DOI: 10.1152/physiol.00041.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
9
Markovich D. Physiological roles of renal anion transporters NaS1 and Sat1. Am J Physiol Renal Physiol 2011;300:F1267-70. [PMID: 21490138 DOI: 10.1152/ajprenal.00061.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
10
Markovich D. Physiological roles of mammalian sulfate transporters NaS1 and Sat1. Arch Immunol Ther Exp (Warsz) 2011;59:113-6. [PMID: 21298488 DOI: 10.1007/s00005-011-0114-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
11
Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto KI, Barry NP, Levi M. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 2009;297:F350-61. [PMID: 19493963 PMCID: PMC2724260 DOI: 10.1152/ajprenal.90765.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]  Open
12
Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2007;32:322-34. [PMID: 18056784 DOI: 10.1152/physiolgenomics.00160.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
13
Sabboh H, Coxam V, Horcajada MN, Rémésy C, Demigné C. Effects of plant food potassium salts (citrate, galacturonate or tartrate) on acid–base status and digestive fermentations in rats. Br J Nutr 2007;98:72-7. [PMID: 17381878 DOI: 10.1017/s0007114507701691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
14
Markovich D, Aronson PS. Specificity and Regulation of Renal Sulfate Transporters. Annu Rev Physiol 2007;69:361-75. [PMID: 17002596 DOI: 10.1146/annurev.physiol.69.040705.141319] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
15
Bobulescu IA, Moe OW. Na+/H+ exchangers in renal regulation of acid-base balance. Semin Nephrol 2006;26:334-44. [PMID: 17071327 PMCID: PMC2878276 DOI: 10.1016/j.semnephrol.2006.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
16
Faroqui S, Sheriff S, Amlal H. Metabolic acidosis has dual effects on sodium handling by rat kidney. Am J Physiol Renal Physiol 2006;291:F322-31. [PMID: 16495212 DOI: 10.1152/ajprenal.00338.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
17
Sabboh H, Horcajada MN, Coxam V, Tressol JC, Besson C, Rémésy C, Demigné C. Effect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet. Br J Nutr 2005;94:192-7. [PMID: 16115352 DOI: 10.1079/bjn20051474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
18
Pelis RM, Edwards SL, Kunigelis SC, Claiborne JB, Renfro JL. Stimulation of renal sulfate secretion by metabolic acidosis requires Na+/H+exchange induction and carbonic anhydrase. Am J Physiol Renal Physiol 2005;289:F208-16. [PMID: 15741604 DOI: 10.1152/ajprenal.00468.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
19
Lee A, Markovich D. Characterization of the human renal Na(+)-sulphate cotransporter gene ( NAS1) promoter. Pflugers Arch 2004;448:490-9. [PMID: 15197597 DOI: 10.1007/s00424-004-1251-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
20
Amlal H, Sheriff S, Soleimani M. Upregulation of collecting duct aquaporin-2 by metabolic acidosis: role of vasopressin. Am J Physiol Cell Physiol 2003;286:C1019-30. [PMID: 15075200 DOI: 10.1152/ajpcell.00394.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
21
Dudas PL, Renfro JL. Transepithelial sulfate transport by avian renal proximal tubule epithelium in primary culture. Am J Physiol Regul Integr Comp Physiol 2002;283:R1354-61. [PMID: 12388445 DOI: 10.1152/ajpregu.00475.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
22
Markovich D. Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 2001;81:1499-533. [PMID: 11581495 DOI: 10.1152/physrev.2001.81.4.1499] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
23
Beck L, Silve C. Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int 2001;59:835-45. [PMID: 11231338 DOI: 10.1046/j.1523-1755.2001.059003835.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
24
Lee A, Beck L, Markovich D. The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 2000;70:354-63. [PMID: 11161786 DOI: 10.1006/geno.2000.6404] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
25
Markovich D. Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. Eur J Cell Biol 2000;79:531-8. [PMID: 11001489 DOI: 10.1078/0171-9335-00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
26
Beck L, Markovich D. The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 2000;275:11880-90. [PMID: 10766815 DOI: 10.1074/jbc.275.16.11880] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA