1
|
Beltran JL, McGrath LG, Caruso S, Bain RK, Hendrix CE, Kamran H, Johnston HG, Collings RM, Henry MCN, Abera TAL, Donoso VA, Carriker EC, Thurtle-Schmidt BH. Borate Transporters and SLC4 Bicarbonate Transporters Share Key Functional Properties. MEMBRANES 2023; 13:235. [PMID: 36837738 PMCID: PMC9959716 DOI: 10.3390/membranes13020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Borate transporters are membrane transport proteins that regulate intracellular borate levels. In plants, borate is a micronutrient essential for growth but is toxic in excess, while in yeast, borate is unnecessary for growth and borate export confers tolerance. Borate transporters share structural homology with human bicarbonate transporters in the SLC4 family despite low sequence identity and differences in transported solutes. Here, we characterize the S. cerevisiae borate transporter Bor1p and examine whether key biochemical features of SLC4 transporters extend to borate transporters. We show that borate transporters and SLC4 transporters share multiple properties, including lipid-promoted dimerization, sensitivity to stilbene disulfonate-derived inhibitors, and a requirement for an acidic residue at the solute binding site. We also identify several amino acids critical for Bor1p function and show that disease-causing mutations in human SLC4A1 will eliminate in vivo function when their homologous mutations are introduced in Bor1p. Our data help elucidate mechanistic features of Bor1p and reveal significant functional properties shared between borate transporters and SLC4 transporters.
Collapse
|
2
|
The Bicarbonate Transporter (MoAE4) Localized on Both Cytomembrane and Tonoplast Promotes Pathogenesis in Magnaporthe oryzae. J Fungi (Basel) 2021; 7:jof7110955. [PMID: 34829242 PMCID: PMC8624833 DOI: 10.3390/jof7110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Bicarbonate (HCO3−) transporter family including the anion exchanger (AE) group is involved in multiple physiological processes through regulating acid-base homeostasis. HCO3− transporters have been extensively studied in mammals, but fungal homologues of AE are poorly understood. Here, we characterized the AE group member (MoAE4) in Magnaporthe oryzae. MoAE4 exhibits more sequence and structure homologies with the reported AE4 and BOR1 proteins. In addition to the common sublocalization on cytomembrane, MoAE4 also localizes on tonoplast. Yeast complementation verified that MoAE4 rescues boron sensitivity and endows NaHCO3 tolerance in the BOR1 deleted yeast. MoAE4 gene is bicarbonate induced in M. oryzae; and loss of MoAE4 (ΔMoAE4) resulted in mycelial growth inhibited by NaHCO3. Lucigenin fluorescence quenching assay confirmed that ΔMoAE4 accumulated less HCO3− in vacuole and more HCO3− in cytosol, revealing a real role of MoAE4 in bicarbonate transport. ΔMoAE4 was defective in conidiation, appressorium formation, and pathogenicity. More H2O2 was detected to be accumulated in ΔMoAE4 mycelia and infected rice cells. Summarily, our data delineate a cytomembrane and tonoplast located HCO3− transporter, which is required for development and pathogenicity in M. oryzae, and revealing a potential drug target for blast disease control.
Collapse
|
3
|
Pyle E, Guo C, Hofmann T, Schmidt C, Ribiero O, Politis A, Byrne B. Protein–Lipid Interactions Stabilize the Oligomeric State of BOR1p from Saccharomyces cerevisiae. Anal Chem 2019; 91:13071-13079. [DOI: 10.1021/acs.analchem.9b03271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Euan Pyle
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
- Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Chengzhi Guo
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Tommy Hofmann
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str 3a, D-06120 Halle, Germany
| | - Orquidea Ribiero
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Argyris Politis
- Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| |
Collapse
|
4
|
Eigenstetter G, Takors R. Dynamic modeling reveals a three-step response of Saccharomyces cerevisiae to high CO2 levels accompanied by increasing ATP demands. FEMS Yeast Res 2018; 17:2975573. [PMID: 28175306 DOI: 10.1093/femsyr/fox008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae is often applied in large-scale bioreactors where gradients of dissolved CO2 exist. Under high CO2 pressure, the dissolved gas enters the microbe, causing multifold intracellular responses such as decrease of pH, increase of HCO3- and changes of ion balance. Effects of varying CO2 concentrations are multifold, hard to scale and hardly investigated. Hence, the multi-level response to CO2 shifts was summarized in a predicting ODE model with mass action kinetics, balancing electrochemical charges in steady-state growth conditions. Compared to experimental observations, the simulated dynamics of ion concentrations were found to be consistent. During CO2 shifts, the model predicts the initial depolarization of the membrane potential, the temporal pH drop and the activation of countermeasures such as Pma1-mediated H+ export and Trk1,2-mediated K+ import. In conclusion, extracellular cation concentrations and the cellular pH regulation are critical factors that determine physiology and cellular energy management. Consequently, pressure-induced CO2 gradients cause peaks of ATP demand which may occur in cells circulating in large-scale industrial bioreactors.
Collapse
|
5
|
Coudray N, Lasala R, Zhang Z, Clark KM, Dumont ME, Stokes DL. Deducing the symmetry of helical assemblies: Applications to membrane proteins. J Struct Biol 2016; 195:167-178. [PMID: 27255388 DOI: 10.1016/j.jsb.2016.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Helical reconstruction represents a convenient and powerful approach for structure determination of macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular crystals with helical symmetry represents an attractive alternative, especially when their small size precludes the use of single-particle analysis. An essential first step for helical reconstruction is to characterize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus producing several candidate indexing schemes. The second approach compares the layer lines from images with those from synthetic models built with the various candidate schemes. The third approach uses unit cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a β-barrel channel from the outer membrane of E. coli, OmpF.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Kathy M Clark
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - Mark E Dumont
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
6
|
Svrbicka A, Toth Hervay N, Gbelska Y. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis. Folia Microbiol (Praha) 2015; 61:101-7. [PMID: 26142045 DOI: 10.1007/s12223-015-0414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Abstract
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
Collapse
Affiliation(s)
- Alexandra Svrbicka
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic
| | - Nora Toth Hervay
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15, Bratislava 4, Slovak Republic.
| |
Collapse
|
7
|
Richard L, Guillouet SE, Uribelarrea JL. Quantification of the transient and long-term response of Saccharomyces cerevisiae to carbon dioxide stresses of various intensities. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
10
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
11
|
Tokuda N, Igarashi K, Shimamura T, Yurugi-Kobayashi T, Shiroishi M, Ito K, Sugawara T, Asada H, Murata T, Nomura N, Iwata S, Kobayashi T. Cloning, expression and purification of the anion exchanger 1 homologue from the basidiomycete Phanerochaete chrysosporium. Protein Expr Purif 2011; 79:81-7. [PMID: 21515379 DOI: 10.1016/j.pep.2011.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/27/2022]
Abstract
Anion exchangers are membrane proteins that have been identified in a wide variety of species, where they transport Cl(-) and HCO3(-)across the cell membrane. In this study, we cloned an anion-exchange protein from the genome of the basidiomycete Phanerochaete chrysosporium (PcAEP). PcAEP is a 618-amino acid protein that is homologous to the human anion exchanger (AE1) with 22.9% identity and 40.3% similarity. PcAEP was overexpressed by introducing the PcAEP gene into the genome of Pichia pastoris. As a result, PcAEP localized in the membrane of P. pastoris and was solubilized successfully by n-dodecyl-β-D-maltoside. His-tagged PcAEP was purified as a single band on SDS-PAGE using immobilized metal affinity chromatography and gel filtration chromatography. Purified PcAEP was found to bind to SITS, an inhibitor of the AE family, suggesting that the purified protein is folded properly. PcAEP expressed and purified using the present system could be useful for biological and structural studies of the anion exchange family of proteins.
Collapse
Affiliation(s)
- Natsuko Tokuda
- Department of Medical Chemistry, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vilas GL, Morgan PE, Loganathan SK, Quon A, Casey JR. A Biochemical Framework for SLC4A11, the Plasma Membrane Protein Defective in Corneal Dystrophies. Biochemistry 2011; 50:2157-69. [DOI: 10.1021/bi101887z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gonzalo L. Vilas
- Membrane Protein Disease Research Group, Department of Physiology, and Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| | - Patricio E. Morgan
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina CP1900
| | - Sampath K. Loganathan
- Membrane Protein Disease Research Group, Department of Physiology, and Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| | - Anita Quon
- Membrane Protein Disease Research Group, Department of Physiology, and Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| | - Joseph R. Casey
- Membrane Protein Disease Research Group, Department of Physiology, and Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| |
Collapse
|
13
|
Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics 2011; 97:106-11. [DOI: 10.1016/j.ygeno.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022]
|
14
|
Miwa K, Fujiwara T. Boron transport in plants: co-ordinated regulation of transporters. ANNALS OF BOTANY 2010; 105:1103-8. [PMID: 20228086 PMCID: PMC2887066 DOI: 10.1093/aob/mcq044] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND The essentiality of boron (B) for plant growth was established > 85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. SCOPE Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. CONCLUSIONS The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B conditions and regulate B transport by modulating the expression and/or accumulation of these transporters. Results obtained in model plants are applicable to other plant species, and such knowledge may be useful in designing plants or crops tolerant to soils containing low or high B.
Collapse
Affiliation(s)
- Kyoko Miwa
- Creative Research Initiative Sousei, Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | | |
Collapse
|
15
|
Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. Protein Expr Purif 2010; 71:207-23. [PMID: 20045057 DOI: 10.1016/j.pep.2009.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/23/2009] [Accepted: 12/26/2009] [Indexed: 01/15/2023]
Abstract
To enhance the quantity and quality of eukaryotic transmembrane proteins (TMPs) available for structure determination by X-ray crystallography, we have optimized protocols for purification of TMPs expressed in the yeast Saccharomyces cerevisiae. We focused on a set of the highest-expressing endogenous yeast TMPs for which there are established biochemical assays. Genes encoding the target TMPs are transferred via ligation-independent cloning to a series of vectors that allow expression of reading frames fused to C-terminal His10 and ZZ (IgG-binding) domains that are separated from the reading frame by a cleavage site for rhinovirus 3C protease. Several TMP targets expressed from these vectors have been purified via affinity chromatography and gel filtration chromatography at levels and purities sufficient for ongoing crystallization trials. Initial purifications were based on expression of the genes under control of a galactose-inducible promoter, but higher cell densities and improved expression have been obtained through use of the yeast ADH2 promoter. Wide variations have been observed in the behavior of different TMP targets during purification; some can be readily purified, while others do not bind efficiently to affinity matrices, are not efficiently cleaved from the matrices, or remain tightly associated with the matrices even after cleavage of the affinity tags. The size, oligomeric state, and composition of purified protein-detergent complexes purified under different conditions were analyzed using a colorimetric assay of detergent concentrations and by analytical size-exclusion chromatography using static light scattering, refractive index, and UV absorption detection to monitor the elution profiles. Effective procedures were developed for obtaining high concentrations of purified TMPs without excessively concentrating detergents.
Collapse
|
16
|
Takano J, Miwa K, Fujiwara T. Boron transport mechanisms: collaboration of channels and transporters. TRENDS IN PLANT SCIENCE 2008; 13:451-7. [PMID: 18603465 DOI: 10.1016/j.tplants.2008.05.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/01/2008] [Accepted: 05/16/2008] [Indexed: 05/02/2023]
Abstract
Boron (B) is an essential element for plants, but is also toxic when present in excess. B deficiency and toxicity are both major agricultural problems worldwide, and elucidating the molecular mechanisms of B transport should allow us to develop technology to alleviate B deficiency and toxicity problems. Recent milestones include the identification of a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, from Arabidopsis thaliana. Both proteins were shown to be required for plant growth under B limitation. In addition, BOR1 homologs are required for B homeostasis in mammalian cells and B-toxicity tolerance in yeast and plants. Here, we discuss how transgenic approaches show promise for generating crops that are tolerant of B deficiency and toxicity.
Collapse
Affiliation(s)
- Junpei Takano
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
17
|
Jennings ML, Howren TR, Cui J, Winters M, Hannigan R. Transport and regulatory characteristics of the yeast bicarbonate transporter homolog Bor1p. Am J Physiol Cell Physiol 2007; 293:C468-76. [PMID: 17459946 DOI: 10.1152/ajpcell.00286.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The functional properties of the Saccharomyces cerevisiae bicarbonate transporter homolog Bor1p (YNL275wp) were characterized by measuring boron (H3BO3), Na+, and Cl− fluxes. Neither Na+ nor Cl− appears to be a transported substrate for Bor1p. Uphill efflux of boron mediated by Bor1p was demonstrated directly by loading cells with boron and resuspending in a low-boron medium. Cells with intact BOR1, but not the deletant strain, transport boron outward until the intracellular concentration is sevenfold lower than that in the medium. Boron efflux through Bor1p is a saturable function of intracellular boron (apparent Km ∼1–2 mM). The extracellular pH dependences of boron distribution and efflux indicate that uphill efflux is driven by the inward H+ gradient. Addition of 30 mM HCO3− does not affect boron extrusion by Bor1p, indicating that HCO3− does not participate in Bor1p function. Functional Bor1p is present in cells grown in medium with no added boron, and overnight growth in 10 mM H3BO3 causes only a small increase in the levels of functional Bor1p and in BOR1 mRNA. The fact that Bor1p is expressed when there is no need for boron extrusion and is not strongly induced in the presence of growth-inhibitory boron concentrations is surprising if the main physiological function of yeast Bor1p is boron efflux. A possible role in vacuolar dynamics for Bor1p was recently reported by Decker and Wickner ( 10 ). Under the conditions used presently, there appears to be mildly abnormal vacuolar morphology in the deletant strain.
Collapse
Affiliation(s)
- Michael L Jennings
- Dept. of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 505, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
18
|
White MA, Clark KM, Grayhack EJ, Dumont ME. Characteristics affecting expression and solubilization of yeast membrane proteins. J Mol Biol 2007; 365:621-36. [PMID: 17078969 PMCID: PMC1839945 DOI: 10.1016/j.jmb.2006.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
Biochemical and structural analysis of membrane proteins often critically depends on the ability to overexpress and solubilize them. To identify properties of eukaryotic membrane proteins that may be predictive of successful overexpression, we analyzed expression levels of the genomic complement of over 1000 predicted membrane proteins in a recently completed Saccharomyces cerevisiae protein expression library. We detected statistically significant positive and negative correlations between high membrane protein expression and protein properties such as size, overall hydrophobicity, number of transmembrane helices, and amino acid composition of transmembrane segments. Although expression levels of membrane and soluble proteins exhibited similar negative correlations with overall hydrophobicity, high-level membrane protein expression was positively correlated with the hydrophobicity of predicted transmembrane segments. To further characterize yeast membrane proteins as potential targets for structure determination, we tested the solubility of 122 of the highest expressed yeast membrane proteins in six commonly used detergents. Almost all the proteins tested could be solubilized using a small number of detergents. Solubility in some detergents depended on protein size, number of transmembrane segments, and hydrophobicity of predicted transmembrane segments. These results suggest that bioinformatic approaches may be capable of identifying membrane proteins that are most amenable to overexpression and detergent solubilization for structural and biochemical analyses. Bioinformatic approaches could also be used in the redesign of proteins that are not intrinsically well-adapted to such studies.
Collapse
Affiliation(s)
- Michael A. White
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kathleen M. Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth J. Grayhack
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
19
|
Kim H, Melén K, Österberg M, von Heijne G. A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 2006; 103:11142-7. [PMID: 16847258 PMCID: PMC1544055 DOI: 10.1073/pnas.0604075103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to approximately 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.
Collapse
Affiliation(s)
- Hyun Kim
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
| | - Karin Melén
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
- Stockholm Bioinformatics Center, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Marie Österberg
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
| | - Gunnar von Heijne
- *Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, and
- Stockholm Bioinformatics Center, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Amoroso G, Morell-Avrahov L, Müller D, Klug K, Sültemeyer D. The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Mol Microbiol 2005; 56:549-58. [PMID: 15813743 DOI: 10.1111/j.1365-2958.2005.04560.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Carbonic anhydrase (CA) catalyses the rapid interconversion between CO(2) and HCO(3) (-). Despite its wide distribution among living organisms, the presence of CA in fungi has been controversially discussed. Using mass spectrometric analysis of (18)O exchange from doubly labelled CO(2), we were able to measure CA activity in intact cells of Saccharomyces cerevisiae. Intracellular CA activity was lacking in the Deltance103 mutant, indicating that NCE103 encodes a functional CA. This was proven by overexpressing and purification of the NCE103 gene product showing a specific activity of around 6900 units per mg protein. Interestingly, the in vivo CA activity was 10-20 times higher in cells grown on low inorganic carbon (Ci; air containing 0.035% CO(2)) than in high-Ci cells (grown on 5% CO(2)). The enhanced CA activity of low-Ci cells was inducible after transferring high-Ci cells to air. Northern blot analysis revealed that that expression of NCE103 is transcriptionally regulated by low Ci which was also demonstrated by fusing the NCE103 promoter to beta-galactosidase as a reporter gene. Inactivation of NCE103 results in a high CO(2) requiring mutant indicating that a functional CA is an important prerequisite for S. cerevisiae to grow under low-Ci conditions.
Collapse
Affiliation(s)
- Gabriele Amoroso
- Department of Biology, University of Kaiserslautern, PO BOX 3049, D-67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
21
|
Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO 3 - transporters. Pflugers Arch 2004; 447:495-509. [PMID: 14722772 DOI: 10.1007/s00424-003-1180-2] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/05/2003] [Indexed: 12/21/2022]
Abstract
The SLC4 family consists of ten genes. All appear to encode integral membrane proteins with very similar hydropathy plots-consistent with the presence of 10-14 transmembrane segments. At least eight SLC4 members encode proteins that transport HCO(3)(-) (or a related species, such as CO(3)(2-)) across the plasma membrane. Functionally, these eight proteins fall into two major groups: three Cl-HCO(3) exchangers (AE1-3) and five Na(+)-coupled HCO(3)(-) transporters (NBCe1, NBCe2, NBCn1, NDCBE, NCBE). Two of the Na(+)-coupled HCO(3)(- )transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO(3)(-) transporters and all three AEs are electroneutral. At least NDCBE transports Cl(-) in addition to Na(+) and HCO(3)(-). Whether NCBE transports Cl(-)-in addition to Na(+) and HCO(3)(-)-is unsettled. In addition, two other SLC4 members (AE4 and BTR1) do not yet have a firmly established function; on the basis of homology, they fall between the two major groups. A characteristic of many, though not all, SLC4 members is inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 gene products play important roles in the carriage of CO(2) by erythrocytes, the absorption or secretion of H(+) or HCO(3)(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Departments of Physiology and Biophysics and Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|
22
|
Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b97215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. Arabidopsis boron transporter for xylem loading. Nature 2002; 420:337-40. [PMID: 12447444 DOI: 10.1038/nature01139] [Citation(s) in RCA: 355] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Accepted: 09/03/2002] [Indexed: 11/08/2022]
Abstract
Boron deficiency hampers the productivity of 132 crops in more than 80 countries. Boron is essential in higher plants primarily for maintaining the integrity of cell walls and is also beneficial and might be essential in animals and in yeast. Understanding the molecular mechanism(s) of boron transport is crucial for alleviating boron deficiency. Here we describe the molecular identification of boron transporters in biological systems. The Arabidopsis thaliana mutant bor1-1 is sensitive to boron deficiency. Uptake studies indicated that xylem loading is the key step for boron accumulation in shoots with a low external boron supply and that the bor1-1 mutant is defective in this process. Positional cloning identified BOR1 as a membrane protein with homology to bicarbonate transporters in animals. Moreover, a fusion protein of BOR1 and green fluorescent protein (GFP) localized to the plasma membrane in transformed cells. The promoter of BOR1 drove GFP expression in root pericycle cells. When expressed in yeast, BOR1 decreased boron concentrations in cells. We show here that BOR1 is an efflux-type boron transporter for xylem loading and is essential for protecting shoots from boron deficiency.
Collapse
Affiliation(s)
- Junpei Takano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Current awareness on yeast. Yeast 2001; 18:1357-64. [PMID: 11571760 DOI: 10.1002/yea.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|