1
|
Bernardazzi C, Sheikh IA, Xu H, Ghishan FK. The Physiological Function and Potential Role of the Ubiquitous Na +/H + Exchanger Isoform 8 (NHE8): An Overview Data. Int J Mol Sci 2022; 23:ijms231810857. [PMID: 36142772 PMCID: PMC9501935 DOI: 10.3390/ijms231810857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.
Collapse
|
2
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
3
|
Huang C, Ge F, Yao X, Guo X, Bao P, Ma X, Wu X, Chu M, Yan P, Liang C. Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks. Front Microbiol 2021; 12:682989. [PMID: 34248900 PMCID: PMC8265505 DOI: 10.3389/fmicb.2021.682989] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The change in the feeding system can greatly improve the growth performance of the yak (Bos grunniens), an important livestock species in the plateau region. Here, we comprehensively compared the effects of different feeding systems on the growth performance and ruminal development of yaks, and investigated the effects of ruminal microorganisms and metabolites using the 16S rRNA gene sequencing and liquid chromatograph–mass spectrometer (LC-MS) technologies. We found that compared to traditional grazing feeding, house feeding significantly improved the growth performance (such as average daily gain and net meat weight) and rumen development of the yaks. At the genus level, the abundance of Rikenellaceae RC9 Gut group, Christensenellaceae R-7 group, Lachnospiraceae NK3A20 group, Ruminococcaceae UCG-014, and Prevotellaceae UCG-003 showed significant differences and was closely related to rumen development in the two distinct feeding systems. Also, metabolomics revealed that the change in the feeding system significantly affected the concentration and metabolic pathways of the related rumen metabolites. The metabolites with significant differences were significantly enriched in purine metabolism (xanthine, adenine, inosine, etc.), tyrosine metabolism (L-tyrosine, dopaquinone, etc.), phenylalanine metabolism (dihydro-3-caumaric acid, hippuric acid, etc.), and cAMP signaling pathway [acetylcholine, (-)-epinephrine, etc.]. This study scientifically support the house fattening feeding system for yaks. Also, our results provide new insights into the composition and function of microbial communities that promote ruminal development and in general growth of the yaks.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xixi Yao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Amiri M, Seidler UE, Nikolovska K. The Role of pH i in Intestinal Epithelial Proliferation-Transport Mechanisms, Regulatory Pathways, and Consequences. Front Cell Dev Biol 2021; 9:618135. [PMID: 33553180 PMCID: PMC7862550 DOI: 10.3389/fcell.2021.618135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023] Open
Abstract
During the maturation of intestinal epithelial cells along the crypt/surface axis, a multitude of acid/base transporters are differentially expressed in their apical and basolateral membranes, enabling processes of electrolyte, macromolecule, nutrient, acid/base and fluid secretion, and absorption. An intracellular pH (pHi)-gradient is generated along the epithelial crypt/surface axis, either as a consequence of the sum of the ion transport activities or as a distinctly regulated entity. While the role of pHi on proliferation, migration, and tumorigenesis has been explored in cancer cells for some time, emerging evidence suggests an important role of the pHi in the intestinal stem cells (ISCs) proliferative rate under physiological conditions. The present review highlights the current state of knowledge about the potential regulatory role of pHi on intestinal proliferation and differentiation.
Collapse
|
5
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
6
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Rivarola V, Di Giusto G, Christensen MJ, Ford P, Capurro C. AQP2-Induced Acceleration of Renal Cell Proliferation Involves the Activation of a Regulatory Volume Increase Mechanism Dependent on NHE2. J Cell Biochem 2017; 118:967-978. [DOI: 10.1002/jcb.25602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/17/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Valeria Rivarola
- Facultad de Medicina, Departamento de Ciencia Fisiológicas; Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Gisela Di Giusto
- Facultad de Medicina, Departamento de Ciencia Fisiológicas; Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Universidad de Buenos Aires; Buenos Aires Argentina
| | - María José Christensen
- Facultad de Medicina, Departamento de Ciencia Fisiológicas; Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Paula Ford
- Facultad de Medicina, Departamento de Ciencia Fisiológicas; Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Claudia Capurro
- Facultad de Medicina, Departamento de Ciencia Fisiológicas; Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
8
|
Xu H, McCoy A, Li J, Zhao Y, Ghishan FK. Sodium butyrate stimulates NHE8 expression via its role on activating NHE8 basal promoter activity. Am J Physiol Gastrointest Liver Physiol 2015; 309:G500-5. [PMID: 26159698 PMCID: PMC4572406 DOI: 10.1152/ajpgi.00194.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 01/31/2023]
Abstract
Butyrate is a major metabolite in colonic lumen. It is produced from bacterial fermentation of dietary fiber. Butyrate has been shown to stimulate electroneutral sodium absorption through its regulation on sodium/hydrogen exchanger 3 (NHE3). Although NHE8, the newest addition of intestinal NHE family, is involved in sodium absorption in the intestinal tract, whether butyrate modulates NHE8 expression in the intestinal epithelial cells is not known. In the current study, we showed that butyrate treatment strongly induced NHE8 protein and NHE8 mRNA expression in human intestinal epithelial cells. Transfection with the human NHE8 promoter reporter constructs showed that butyrate treatment stimulated reporter gene expression at an amount comparable with its stimulation of NHE8 mRNA expression. Interestingly, a similar result was also observed in human NHE8 promoter transfected cells after trichostatin (TSA) treatment. Gel mobility shift assay identified an enhanced Sp3 protein binding on the human NHE8 basal promoter region upon butyrate stimulation. Furthermore, Sp3 acetylation modification is involved in butyrate-mediated NHE8 activation in Caco-2 cells. Our findings suggest that the mechanism of butyrate action on NHE8 expression involves enhanced Sp3 interaction at the basal promoter region of the human NHE8 gene promoter to activate NHE8 gene transcription. Thus butyrate is involved in intestinal regulation of NHE8 resulting enhanced sodium absorption.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona, Tucson, Arizona
| | | | - Jing Li
- University of Arizona, Tucson, Arizona
| | - Yang Zhao
- University of Arizona, Tucson, Arizona
| | | |
Collapse
|
9
|
Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. J Dairy Sci 2014; 97:5668-75. [DOI: 10.3168/jds.2013-7807] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
|
10
|
Molecular cloning, tissue distribution and ontogenetic expression of sodium proton exchanger isoform 2 ( NHE-2) mRNA in the small intestine of pigs. Animal 2012; 3:402-7. [PMID: 22444311 DOI: 10.1017/s1751731108003649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Molecular cloning, tissue distribution and ontogenetic regulation of sodium/proton exchanger isoform 2 (NHE-2) mRNA expression were evaluated in the pig small intestine during postnatal development. The 2872-bp porcine full cDNA sequence of the NHE-2 (EF672046) cloned in this study showed 80% and 70% homology with known human and mouse gene sequence, respectively. Hydrophobic prediction suggests 13 putative membrane-spanning domains within porcine NHE-2. The porcine NHE-2 mRNA was detected in the brain, liver, kidney, heart, lung, small intestine and muscle. The small intestine had the highest NHE-2 mRNA abundance and the brain, lung and liver had the lowest NHE-2 mRNA abundance (P < 0.05). Along the longitudinal axis, the duodenum had the highest NHE-2 mRNA abundance and the ileum and colon had the lowest NHE-2 mRNA abundance (P < 0.05). The NHE-2 mRNA level was increased from day 1 to day 26 in the duodenum (P < 0.05) and dropped dramatically on day 30 (P < 0.05). There is no difference between day 1 and day 7 (P > 0.05). After day 30, the NHE-2 mRNA level remained the same except on day 90 (P > 0.05). The mRNA expression of NHE-2 was not only differentially regulated by age but also differentially distributed along the small intestine of piglets at early stages and growing stages of life, which may contribute to changes in NHE activity.
Collapse
|
11
|
Xu H, Zhang B, Li J, Wang C, Chen H, Ghishan FK. Impaired mucin synthesis and bicarbonate secretion in the colon of NHE8 knockout mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G335-43. [PMID: 22575219 PMCID: PMC3774248 DOI: 10.1152/ajpgi.00146.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium/hydrogen exchanger 8 (NHE8), the newest member of the SLC9 family, is expressed at the apical membrane of the epithelial cells in the intestine and the kidney. Although NHE8 has been shown to be an important player for intestinal sodium absorption early in development, its physiological role in the intestine remains unclear. Here, we successfully created a NHE8 knockout (NHE8(-/-)) mouse model to study the function of this transporter in the intestinal tract. Embryonic stem cells containing interrupted NHE8 gene were injected into mouse blastocyst to produce NHE8(+/-) chimeras. NHE8(-/-) mice showed no lethality during embryonic and fetal development. These mice had normal serum sodium levels and no signs of diarrhea. Apically expressed NHE2 and NHE3 were increased in the small intestine of the NHE8(-/-) mice in compensation. The number of goblet cells and mucin (MUC)-positive cells in the colon was reduced in NHE8(-/-) mice along with mucosal pH, MUC2 expression as well as downregulated in adenoma (DRA) expression. Therefore, the role of NHE8 in the intestine involves both sodium absorption and bicarbonate secretion.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona, Tucson, Arizona
| | - Bo Zhang
- University of Arizona, Tucson, Arizona
| | - Jing Li
- University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
12
|
Muthusamy S, Shukla S, Amin MR, Cheng M, Orenuga T, Dudeja PK, Malakooti J. PKCδ-dependent activation of ERK1/2 leads to upregulation of the human NHE2 transcriptional activity in intestinal epithelial cell line C2BBe1. Am J Physiol Gastrointest Liver Physiol 2012; 302:G317-25. [PMID: 22052014 PMCID: PMC3287399 DOI: 10.1152/ajpgi.00363.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The apical Na+/H+ exchanger (NHE) isoform NHE2 is involved in transepithelial Na+ absorption in the intestine. Our earlier studies have shown that mitogenic agent phorbol 12-myristate 13-acetate (PMA) induces the expression of NHE2 through activation of transcription factor early growth response-1 (Egr-1) and its interactions with the NHE2 promoter. However, the signaling pathways involved in transcriptional stimulation of NHE2 in response to PMA in the intestinal epithelial cells are not known. Chemical inhibitors and genetic approaches were used to investigate the signaling pathways responsible for the stimulation of NHE2 expression by PMA via Egr-1 induction. We show that, in response to PMA, PKCδ, a member of novel PKC isozymes, and MEK-ERK1/2 pathway of mitogen-activated protein kinases stimulate the NHE2 expression in C2BBe1 intestinal epithelial cells. PMA rapidly and transiently induced activation of PKCδ. Small inhibitory RNA-mediated knockdown of PKCδ blocked the stimulatory effect of PMA on the NHE2 promoter activity. In addition, blockade of PKCδ by rottlerin, a PKCδ-specific inhibitor, and ERK1/2 by U0126, a MEK-ERK inhibitor, abrogated PMA-induced Egr-1 expression. Immunofluorescence studies revealed that inhibition of ERK1/2 activation prevents translocation of PMA-induced Egr-1 into the nucleus. Consistent with these data, PMA-induced Egr-1 interaction with the NHE2 promoter region was prevented in nuclear extracts from U0126-pretreated cells. In conclusion, our data provide the first evidence that the stimulatory effect of PMA on NHE2 expression is mediated through the initial activation of PKCδ, subsequent PKCδ-dependent activation of MEK-ERK1/2 signaling pathway, and stimulation of Egr-1 expression. Furthermore, we show that transcription factor Egr-1 acts as an intermediate effector molecule that links the upstream signaling cues to the long-term stimulation of NHE2 expression by PMA in C2BBe1 cells.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Shukla
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Md. Ruhul Amin
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ming Cheng
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Temitope Orenuga
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Abstract
The epithelial apical membrane Na+/H+ exchangers [NHE (sodium hydrogen exchanger)2 and NHE3] and Cl-/HCO3- exchangers [DRA (down-regulated in adenoma) and PAT-1 (putative anion transporter 1)] are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the last decade, there has been a surge of studies focusing on the short-term regulation of these electrolyte transporters, particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters, involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states, has only now started to unfold with the cloning and characterization of their gene promoters. The present review provides a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases and probiotics) and pathophysiological (cytokines and high levels of serotonin) stimuli. The information available on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. Therefore the present review bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl- transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of the modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhoea associated with inflammatory and infectious diseases and may aid in designing better management protocols.
Collapse
|
14
|
Gill RK, Anbazhagan AN, Esmaili A, Kumar A, Nazir S, Malakooti J, Alrefai WA, Saksena S. Epidermal growth factor upregulates serotonin transporter in human intestinal epithelial cells via transcriptional mechanisms. Am J Physiol Gastrointest Liver Physiol 2011; 300:G627-36. [PMID: 21273531 PMCID: PMC3074988 DOI: 10.1152/ajpgi.00563.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serotonin transporter (SERT) regulates extracellular availability of serotonin and is a potential pharmacological target for gastrointestinal disorders. A decrease in SERT has been implicated in intestinal inflammatory and diarrheal disorders. However, little is known regarding regulation of SERT in the intestine. Epidermal growth factor (EGF) is known to influence intestinal electrolyte and nutrient transport processes and has protective effects on intestinal mucosa. Whether EGF regulates SERT in the human intestine is not known. The present studies examined the regulation of SERT by EGF, utilizing Caco-2 cells grown on Transwell inserts as an in vitro model. Treatment with EGF from the basolateral side (10 ng/ml, 24 h) significantly stimulated SERT activity (∼2-fold, P < 0.01) and mRNA levels compared with control. EGF increased the activities of the two alternate promoter constructs for human SERT gene: SERT promoter 1 (hSERTp1, upstream of exon 1a) and SERT promoter 2 (hSERTp2, upstream of exon 2). Inhibition of EGF receptor (EGFR) tyrosine kinase activity by PD168393 (1 nM) blocked the stimulatory effects of EGF on SERT promoters. Progressive deletions of the SERT promoter indicated that the putative EGF-responsive elements are present in the -672/-472 region of the hSERTp1 and regions spanning -1195/-738 and -152/+123 of hSERTp2. EGF markedly increased the binding of Caco-2 nuclear proteins to the potential AP-1 cis-elements present in EGF-responsive regions of hSERTp1 and p2. Overexpression of c-jun but not c-fos specifically transactivated hSERTp2, with no effects on hSERTp1. Our findings define novel mechanisms of transcriptional regulation of SERT by EGF via EGFR at the promoter level that may contribute to the beneficial effects of EGF in gut disorders.
Collapse
Affiliation(s)
- Ravinder K. Gill
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Arivarasu Natarajan Anbazhagan
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Ali Esmaili
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Anoop Kumar
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Saad Nazir
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases & Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center; Chicago, Illinois
| |
Collapse
|
15
|
Amin MR, Orenuga T, Tyagi S, Dudeja PK, Ramaswamy K, Malakooti J. Tumor necrosis factor-α represses the expression of NHE2 through NF-κB activation in intestinal epithelial cell model, C2BBe1. Inflamm Bowel Dis 2011; 17:720-31. [PMID: 20722069 PMCID: PMC2990806 DOI: 10.1002/ibd.21419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/09/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND High levels of proinflammatory cytokines are linked to pathogenesis of diarrhea in inflammatory bowel disease (IBD). Na(+) absorption is compromised in IBD. The studies were designed to determine the effect of tumor necrosis factor-α (TNF-α) on the expression and activity of NHE2, a Na(+) /H(+) exchanger (NHE) that is involved in transepithelial Na(+) absorption in intestinal epithelial cells. METHODS NHE2 regulation was examined in TNF-α-treated C2BBe1 cells by reverse-transcription polymerase chain reaction (RT-PCR), reporter gene assays, and Western blot analysis. NHE isoform activities were measured as ethyl-isopropyl-amiloride- and HOE694-sensitive (22) Na-uptake. In vitro and in vivo protein-DNA interactions were assessed by gel mobility shift assays and chromatin immunoprecipitation studies. RESULTS TNF-α treatment of C2BBe1 cells led to repression of NHE2 promoter activity, mRNA, and protein levels; and inhibited both NHE2 and NHE3 mediated (22) Na-uptake. 5'-deletion analysis of the NHE2 promoter-reporter constructs identified basepair -621 to -471 as the TNF-α-responsive region (TNF-RE). TNF-α activated NF-κB subunits, p50 and p65, and their DNA-binding to a putative NF-κB motif within TNF-RE. Mutations in the NF-κB motif abolished NF-κB-DNA interactions and abrogated TNF-α-induced repression. Ectopic overexpression of NF-κB resulted in repression of NHE2 expression. Two functionally distinct inhibitors of NF-κB blocked the inhibitory effect of TNF-α. CONCLUSIONS The human NHE2 isoform is a direct target of transcription factor NF-κB. TNF-α-mediated activation of NF-κB decreases the expression and activity of NHE2 in the intestinal epithelial cell line, C2BBe1. These findings implicate NF-κB in the modulation of Na(+) absorption during intestinal inflammatory conditions such as IBD where a high level of TNF-α is detected.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | |
Collapse
|
16
|
Uray KS, Shah SK, Radhakrishnan RS, Jimenez F, Walker PA, Stewart RH, Laine GA, Cox CS. Sodium hydrogen exchanger as a mediator of hydrostatic edema-induced intestinal contractile dysfunction. Surgery 2011; 149:114-25. [PMID: 20553904 DOI: 10.1016/j.surg.2010.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Resuscitation-induced intestinal edema is associated with early and profound mechanical changes in intestinal tissue. We hypothesize that the sodium hydrogen exchanger (NHE), a mechanoresponsive ion channel, is a mediator of edema-induced intestinal contractile dysfunction. METHODS An animal model of hydrostatic intestinal edema was used for all experiments. NHE isoforms 1-3 mRNA and protein were evaluated. Subsequently, the effects of NHE inhibition (with 5-(N-ethyl-N-isopropyl) amiloride [EIPA]) on wet-to-dry ratios, signal transduction and activator of transcription (STAT)-3, intestinal smooth muscle myosin light chain (MLC) phosphorylation, intestinal contractile activity, and intestinal transit were measured. RESULTS NHE1-3 mRNA and protein levels were increased significantly in the small intestinal mucosa with the induction of intestinal edema. The administration of EIPA, an NHE inhibitor, attenuated validated markers of intestinal contractile dysfunction induced by edema as measured by decreased STAT-3 activation, increased MLC phosphorylation, improved intestinal contractile activity, and enhanced intestinal transit. CONCLUSION The mechanoresponsive ion channel NHE may mediate edema-induced intestinal contractile dysfunction, possibly via a STAT-3 related mechanism.
Collapse
Affiliation(s)
- Karen S Uray
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang C, Xu H, Chen H, Li J, Zhang B, Tang C, Ghishan FK. Somatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway. Am J Physiol Cell Physiol 2010; 300:C375-82. [PMID: 21106692 DOI: 10.1152/ajpcell.00421.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu H, Zhang B, Li J, Chen H, Tooley J, Ghishan FK. Epidermal growth factor inhibits intestinal NHE8 expression via reducing its basal transcription. Am J Physiol Cell Physiol 2010; 299:C51-7. [PMID: 20375273 DOI: 10.1152/ajpcell.00081.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sodium/hydrogen exchangers (NHEs) play a major role in Na(+) absorption, cell volume regulation, and intracellular pH regulation. Of the nine identified mammalian NHEs, three (NHE2, NHE3, and NHE8) are localized on the apical membrane of epithelial cells in the small intestine and the kidney. Although the regulation of NHE2 and NHE3 expression has been extensively studied in the past decade, little is known about the regulation of NHE8 gene expression under physiological conditions. The current studies were performed to explore the role of epidermal growth factor (EGF) on NHE8 expression during intestinal maturation. Brush-border membrane vesicles (BBMV) were isolated from intestinal epithelia, and Western blot analysis was performed to determine NHE8 protein expression of sucking male rats treated with EGF. Real-time PCR was used to quantitate NHE8 mRNA expression in rats and Caco-2 cells. Human NHE8 promoter activity was characterized through transfection of Caco-2 cells. Gel mobility shift assays (GMSAs) were used to identify the promoter sequences and the transcriptional factors involved in EGF-mediated regulation. Our results showed that intestinal NHE8 mRNA expression was decreased in EGF-treated rats and Caco-2 cells, and NHE8 protein abundance was also decreased in EGF-treated rats. The activity of the human NHE8 gene promoter transfected in Caco-2 cells was also reduced by EGF treatment. This could be explained by reduced binding of transcription factor Sp3 on the NHE8 basal promoter region in the presence of EGF. Pretreatment with MEK1/2 inhibitor UO-126 could prevent EGF-mediated inhibition of NHE8 gene expression. In conclusion, this study showed that EGF inhibits NHE8 gene expression through reducing its basal transcription, suggesting an important role of EGF in regulating NHE expression during intestinal maturation.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ikari A, Sanada A, Okude C, Sawada H, Yamazaki Y, Sugatani J, Miwa M. Up-regulation of TRPM6 transcriptional activity by AP-1 in renal epithelial cells. J Cell Physiol 2010; 222:481-7. [PMID: 19937979 DOI: 10.1002/jcp.21988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential melastatin 6 (TRPM6) channel is involved in the reabsorption of magnesium in the kidney. We recently found that TRPM6 expression is up-regulated by EGF, but the regulatory mechanism has not been clear. TRPM6 mRNA was endogenously expressed in HEK293 cells. TRPM6 mRNA expression was increased by EGF, which was inhibited by U0126, an MEK inhibitor. Promoter activity of human TRPM6 was observed in the TRPM6 5'-flanking region from -1,214 to -718. This promoter activity was enhanced by EGF and inhibited by U0126. Three putative AP-1 binding sites were identified within the region of -1,214/-718. The mutation of the putative AP-1 binding site (-741/-736) completely inhibited the EGF-induced promoter activity. EGF increased p-ERK1/2, c-Fos, c-Jun, and p-c-Jun levels, which were inhibited by U0126. The introduction of c-Fos or c-Jun siRNA inhibited the EGF-induced promoter activity. A chromatin immunoprecipitation assay revealed that c-Fos and c-Jun bind to the AP-1 binding site within the region of -1,214/-718. These results suggest that EGF up-regulates TRPM6 mRNA expression mediate via the activation of ERK/AP-1-dependent pathway.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Shizuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
O'Mahony F, Toumi F, Mroz MS, Ferguson G, Keely SJ. Induction of Na+/K+/2Cl- cotransporter expression mediates chronic potentiation of intestinal epithelial Cl- secretion by EGF. Am J Physiol Cell Physiol 2008; 294:C1362-70. [PMID: 18400987 DOI: 10.1152/ajpcell.00256.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in EGF receptor (EGFR) signaling occur in intestinal disorders associated with dysregulated epithelial transport. In the present study, we investigated a role for the EGFR in the chronic regulation of intestinal epithelial secretory function. Epithelial Cl(-) secretion was measured as changes in short-circuit current (Isc) across voltage-clamped monolayers of T84 cells in Ussing chambers. Acute treatment of T84 cells with EGF (100 ng/ml, 15 min) chronically enhanced Isc responses to a broad range of secretagogues. This effect was apparent within 3 h, maximal by 6 h, and sustained for 24 h after treatment with EGF. The Na+/K+/2Cl(-) cotransporter (NKCC1) inhibitor bumetanide (100 microM) abolished the effect of EGF, indicating increased responses are due to potentiated Cl(-) secretion. Neither basal nor agonist-stimulated levels of intracellular Ca2+ or PKA activity were altered by EGF, implying that the effects of the growth factor are not due to chronic alterations in levels of second messengers. EGF increased the expression of NKCC1 with a time course similar to that of its effects on Cl(-) secretion. This effect of EGF was maximal after 6 h, at which time NKCC1 expression in EGF-treated cells was 199.9 +/- 21.9% of that in control cells (n = 21, P < 0.005). EGF-induced NKCC1 expression was abolished by actinomycin D, and RT-PCR analysis demonstrated EGF increased expression of NKCC1 mRNA. These data increase our understanding of mechanisms regulating intestinal fluid and electrolyte transport and reveal a novel role for the EGFR in the chronic regulation of epithelial secretory capacity through upregulation of NKCC1 expression.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
21
|
Xu H, Chen H, Dong J, Lynch R, Ghishan FK. Gastrointestinal distribution and kinetic characterization of the sodium-hydrogen exchanger isoform 8 (NHE8). Cell Physiol Biochem 2008; 21:109-16. [PMID: 18209477 DOI: 10.1159/000113752] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2007] [Indexed: 11/19/2022] Open
Abstract
NHE8 is a newly identified NHE isoform expressed in rat intestine. To date, the kinetic characteristics and the intestinal segmental distribution of this NHE isoform have not been studied. This current work was performed to determine the gene expression pattern of the NHE8 transporter along the gastrointestinal tract, as well as its affinity for Na(+), H(+), and sensitivity to known NHE inhibitors HOE694 and S3226. NHE8 was differentially expressed along the GI tract. Higher NHE8 expression was seen in stomach, duodenum, and ascending colon in human, while higher NHE8 expression was seen in jejunum, ileum and colon in adult mouse. Moreover, the expression level of NHE8 is much higher in the stomach and jejunum in young mice compared with adult mice. To evaluate the functional characterictics of NHE8, the pH indicator SNARF-4 was used to monitor the rate of intra-cellular pH (pH(i)) recovery after an NH(4)Cl induced acid load in NHE8 cDNA transfected PS120 cells. The NHE8 cDNA transfected cells exhibited a sodium-dependent proton exchanger activity having a Km for pH(i) of approximately pH 6.5, and a Km for sodium of approximately 23 mM. Low concentration of HOE694 (1 microM) had no effect on NHE8 activity, while high concentration (10 microM) significantly reduced NHE8 activity. In the presence of 80 microM S3226, the NHE8 activity was also inhibited significantly. In conclusion, our work suggests that NHE8 is expressed along the gastrointestinal tract and NHE8 is a functional Na(+)/H(+) exchanger with kinetic characteristics that differ from other apically expressed NHE isoforms.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
22
|
Pearse I, Zhu Y, Murray E, Dudeja P, Ramaswamy K, Malakooti J. Sp1 and Sp3 control constitutive expression of the human NHE2 promoter by interactions with the proximal promoter and the transcription initiation site. Biochem J 2007; 407:101-11. [PMID: 17561809 PMCID: PMC2267401 DOI: 10.1042/bj20070364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously cloned the human Na+/H+ exchanger NHE2 gene and its promoter region. In the present study, the regulatory elements responsible for the constitutive expression of NHE2 were studied. Transient transfection assays revealed that the -40/+150 promoter region contains the core promoter responsible for the optimal promoter activity. A smaller fragment, -10/+40, containing the TIS (transcription initiation site) showed minimal activity. We identified a palindrome that overlaps the TIS and binds to the transcription factors Sp1 and Sp3. Mutations in the 5' flank of the palindrome abolished the Sp1/Sp3 interaction and reduced promoter activity by approx. 45%. In addition, a conserved GC-box centered at -25 was found to play a critical role in basal promoter activity and also interacted with Sp1 and Sp3. An internal deletion in the GC-box severely reduced the promoter activity. Sp1/Sp3 binding to these elements was established using gel-mobility shift assays, confirmed by chromatin immunoprecipitation and co-transfections in Drosophila SL2 cells. Furthermore, we identified two positive regulatory elements in the DNA region corresponding to the 5'-UTR (5'-untranslated region). The results in the present study indicate that Sp1 and Sp3 are required for constitutive NHE2 expression and that the positive regulatory elements of the 5'-UTR may co-operate with the 5'-flanking region to achieve the optimal promoter activity.
Collapse
Affiliation(s)
- Ian Pearse
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Ying X. Zhu
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Eleanor J. Murray
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Pradeep K. Dudeja
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Krishnamurthy Ramaswamy
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Jaleh Malakooti
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Johnstone ED, Speake PF, Sibley CP. Epidermal growth factor and sphingosine-1-phosphate stimulate Na+/H+ exchanger activity in the human placental syncytiotrophoblast. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2290-4. [PMID: 17913870 DOI: 10.1152/ajpregu.00328.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+/H+ exchanger (NHE) has a key role in intracellular pH ([pH]i) regulation of the syncytiotrophoblast in the human placenta and may have a role in the life cycle of this cell. In other cells the NHE (actually a family of up to 9 isoforms) is regulated by a variety of factors, but its regulation in the syncytiotrophoblast has not been studied. Here, we tested the hypotheses that EGF and sphingosine-1-phosphate (S1P), both of which affect trophoblast apoptosis and, in other cell types, NHE activity, stimulate syncytiotrophoblast NHE activity. Villous fragments from term human placentas were loaded with the pH-sensitive dye, BCECF. NHE activity was measured by following the recovery of syncytiotrophoblast [pH]i following an imposed acid load, in the presence and absence of EGF, S1P, and specific inhibitors of NHE activity. Both EGF and S1P caused a dose-dependent upregulation of NHE activity in the syncytiotrophoblast. These effects were blocked by amiloride 500 microM (a nonspecific NHE blocker) and HOE694 100 microM (NHE blocker with NHE1 and 2 isoform selectivity). Effects of EGF were also reduced by the NHE3 selective blocker S3226 (used at 1 microM). These data provide the first evidence that both EGF and S1P stimulate NHE activity in the syncytiotrophoblast; they appear to do so predominantly by activating the NHE1 isoform.
Collapse
Affiliation(s)
- E D Johnstone
- Maternal and Fetal Health Research Group, (Academic Unit of Child Health Univ. of Manchester, St. Mary's Hospital, Manchester M13 OJH
| | | | | |
Collapse
|
24
|
Hua P, Xu H, Uno JK, Lipko MA, Dong J, Kiela PR, Ghishan FK. Sp1 and Sp3 mediate NHE2 gene transcription in the intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 293:G146-53. [PMID: 17379926 DOI: 10.1152/ajpgi.00443.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies have identified a minimal Sp1-driven promoter region (nt -36/+116) directing NHE2 expression in mouse renal epithelial cells. However, this minimal promoter region was not sufficient to support active transcription of NHE2 gene in the intestinal epithelial cells, suggesting the need for additional upstream regulatory elements. In the present study, we used nontransformed rat intestinal epithelial (RIE) cells as a model to identify the minimal promoter region and transcription factors necessary for the basal transcription of rat NHE2 gene in the intestinal epithelial cells. We identified a region within the rat NHE2 gene promoter located within nt -67/-43 upstream of transcription initiation site as indispensable for the promoter function in intestinal epithelial cells. Mutations at nt -56/-51 not only abolished the DNA-protein interaction in this region, but also completely abolished NHE2 gene promoter activity in RIE cells. Supershift assays revealed that Sp1 and Sp3 interact with this promoter region, but, contrary to the minimal promoter indispensable for renal expression of NHE2, both transcription factors expressed individually in Drosophila SL2 cells activated rat NHE2 gene promoter. Moreover, Sp1 was a weaker transactivator and when coexpressed in SL2 cells it reduced Sp3-mediated NHE2 basal promoter activity. Furthermore, DNase I footprinting confirmed that nt -58/-51 is protected by nuclear protein from RIE cells. We conclude that the mechanism of basal control of rat NHE2 gene promoter activity is different in the renal and intestinal epithelium, with Sp3 being the major transcriptional activator of NHE2 gene transcription in the intestinal epithelial cells.
Collapse
Affiliation(s)
- Ping Hua
- Department of Pediatrics, Steele Memorial Children's Research Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Xu L, Dixit MP, Nullmeyer KD, Xu H, Kiela PR, Lynch RM, Ghishan FK. Regulation of Na+/H+ exchanger-NHE3 by angiotensin-II in OKP cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:519-26. [PMID: 16603121 DOI: 10.1016/j.bbamem.2006.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that circulating Angiotensin II (A-II) increases renal Na+ reabsorption via elevated Na+/H+ exchanger isoform 3 (NHE3) activity. We hypothesized that prolonged exposure to A-II leads to an increased expression of renal NHE3 by a transcriptionally mediated mechanism. To test this hypothesis, we utilized the proximal tubule-like OKP cell line to evaluate the effects of 16-h treatment with A-II on NHE3 activity and gene expression. A-II significantly stimulated NHE3-mediated, S-3226-sensitive Na+/H+ exchange. Inhibition of transcription with actinomycin D abolished the stimulatory effect of A-II on NHE3-mediated pH recovery in acid-loaded OKP cells. This prolonged exposure to A-II was also found to elevate endogenous NHE3 mRNA (by 40%)-an effect also abolished by inhibition of gene transcription. To evaluate the molecular mechanism by which A-II regulates NHE3 expression, the activity of NHE3 promoter driven reporter gene was analyzed in transient transfection assays. In transfected OKP cells, rat NHE3 promoter activity was significantly stimulated by A-II treatment, and preliminary mapping indicated that the A-II responsive element(s) is present between 149 and 548 bp upstream of the transcription initiation site in the NHE3 gene promoter. We conclude that a transcriptional mechanism is at least partially responsible for the chronic effects of A-II treatment on renal NHE3 activity.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pediatrics and Physiology, Steele Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Dixit MP, Xu L, Xu H, Bai L, Collins JF, Ghishan FK. Effect of angiotensin-II on renal Na+/H+ exchanger-NHE3 and NHE2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:38-44. [PMID: 15238256 DOI: 10.1016/j.bbamem.2004.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 microM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased approximately 88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content.
Collapse
Affiliation(s)
- Mehul P Dixit
- Department of Pediatrics and Physiology, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Xu Y, Yeung CH, Setiawan I, Avram C, Biber J, Wagenfeld A, Lang F, Cooper TG. Sodium-inorganic phosphate cotransporter NaPi-IIb in the epididymis and its potential role in male fertility studied in a transgenic mouse model. Biol Reprod 2003; 69:1135-41. [PMID: 12773415 DOI: 10.1095/biolreprod.103.018028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Analysis by cDNA microarrays showed that in the murine epididymis, NaPi-IIb was the predominantly expressed epithelial isoform of the sodium-inorganic phosphate cotransporter and was markedly overexpressed in the proximal region in the infertile knockout (KO) compared to the fertile heterozygous (HET) c-ros transgenic mouse. The apparent up-regulation in the KO mouse confirmed by Northern and Western blot analyses could be explained by the absence of NaPi-IIb from the initial segment of the HET epididymis, as revealed by immunohistochemistry, and its presence on the epithelial brush border throughout the proximal epididymis of KO mice, where differentiation of the initial segment fails to occur. Both NaPi-IIb mRNA and protein were scarce or absent from the cauda epididymidis of both genotypes. A high content of inorganic phosphate was measured enzymatically in the HET cauda luminal fluid, with a 27% decrease in the KO mice. This decrease, presumably from a greater reabsorption of inorganic phosphate, particularly in the initial part of the KO epididymis, may disturb the normal process of sperm maturation in these infertile males. By contrast, no apparent consequences were observed for the transport of Na+ and Ca2+, the concentrations of which (approximately 26 mM and approximately 30 microM, respectively) were measured by microelectrodes to be identical in the caudal fluid from both genotypes.
Collapse
Affiliation(s)
- Yaoxian Xu
- Institute of Reproductive Medicine of the University, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Walters JRF. Molecular and cellular biology of small intestinal differentiation, gene expression and hormonal responses. Curr Opin Gastroenterol 2003; 19:106-12. [PMID: 15703549 DOI: 10.1097/00001574-200303000-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Many recent publications have looked at the function of the small intestine at the molecular and cellular level. Hundreds of genes are expressed predominantly in the gastrointestinal tract and many are found in only one segment. The developmental interactions between mesenchymal and epithelial cells are now better understood, as are the processes that determine the fate of the products of the stem cell division. The pattern of the principal transcription factors that regulate the expression of genes in the intestine is becoming clearer. The mechanism of action of hormones and growth factors on the intestine is the subject of considerable research, especially concerning the glucagon-like peptides and epidermal growth factor. Genomic factors, which can affect nutritional requirements by altering intestinal function, will be increasingly recognized.
Collapse
Affiliation(s)
- Julian R F Walters
- Gastroenterology Section, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
29
|
Musch MW, Bookstein C, Rocha F, Lucioni A, Ren H, Daniel J, Xie Y, McSwine RL, Rao MC, Alverdy J, Chang EB. Region-specific adaptation of apical Na/H exchangers after extensive proximal small bowel resection. Am J Physiol Gastrointest Liver Physiol 2002; 283:G975-85. [PMID: 12223358 DOI: 10.1152/ajpgi.00528.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After massive small bowel resection (MSBR), the remnant small intestine adapts to restore Na absorptive function. The possibility that this occurs through increases in cellular Na absorptive capacity was examined by assessing the regional effects of 50% proximal MSBR on the function and expression of the apical membrane Na/H exchangers (NHEs) NHE2 and NHE3. Morphometric analysis confirmed adaptive changes consistent with villus hypertrophy, particularly distal to the anastomosis. Villus epithelium prepared by light mucosal scrapings from 2-wk-postresected and -posttransected control rats exhibited comparable brush-border hydrolase activities, total cell protein per DNA, and villin expression but increased basolateral Na-K-ATPase activity. Parallel increases of two- to threefold in protein and mRNA abundance of NHE2 and NHE3 were observed only in ileal regions distal to the anastomosis of resected rats. Basolateral NHE1 expression was unchanged. After 80% resection, increases in NHE2 and NHE3 became evident in proximal colon. We conclude that increased enterocyte expression and function of apical membrane NHEs in regions distal to the anastomosis play a role in the adaptive process after MSBR. The increased luminal Na load to distal bowel regions after proximal resection may stimulate increases in apical membrane NHE gene transcription and protein expression.
Collapse
Affiliation(s)
- Mark W Musch
- The Martin Boyer Laboratories, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu H, Bai L, Collins JF, Ghishan FK. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 2002; 282:C487-93. [PMID: 11832333 DOI: 10.1152/ajpcell.00412.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current studies were designed to characterize type IIb sodium-inorganic phosphate (P(i)) cotransporter (NaP(i)-IIb) expression and to assess the effect of 1,25-(OH)(2) vitamin D(3) on NaP(i)-IIb gene expression during rat ontogeny. Sodium-dependent P(i) absorption by intestinal brush-border membrane vesicles (BBMVs) decreased with age, and NaP(i)-IIb gene expression also decreased proportionally with age. 1,25-(OH)(2) vitamin D(3) treatment increased intestinal BBMV P(i) absorption by approximately 2.5-fold in suckling rats and by approximately 2.1-fold in adult rats. 1,25-(OH)(2) vitamin D(3) treatment also increased NaP(i)-IIb mRNA abundance by approximately 2-fold in 14-day-old rats but had no effect on mRNA expression in adults. Furthermore, in rat intestinal epithelial (RIE) cells, 1,25-(OH)(2) vitamin D(3) increased NaP(i)-IIb mRNA abundance, an effect that was abolished by actinomycin D. Additionally, human NaP(i)-IIb gene promoter activity in transiently transfected RIE cells showed approximately 1.6-fold increase after 1,25-(OH)(2) vitamin D(3) treatment. In conclusion, we demonstrate that the age-related decrease in intestinal sodium-dependent P(i) absorption correlates with decreased NaP(i)-IIb mRNA expression. Our data also suggest that the effect of 1,25-(OH)(2) vitamin D(3) on NaP(i)-IIb expression is at least partially mediated by gene transcription in suckling rats.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|