1
|
Keles U, Kalem-Yapar NE, Hultén H, Zhao LN, Kaldis P. Impact of Short-Term Lipid Overload on Whole-Body Physiology. Mol Cell Biol 2024; 45:47-58. [PMID: 39726368 DOI: 10.1080/10985549.2024.2438814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Nisan Ece Kalem-Yapar
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Hanna Hultén
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
2
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
3
|
Zheng Y, He Z, Kong Y, Huang X, Zhu W, Liu Z, Gong L. Combined Metabolomics with Transcriptomics Reveals Important Serum Biomarkers Correlated with Lung Cancer Proliferation through a Calcium Signaling Pathway. J Proteome Res 2021; 20:3444-3454. [PMID: 34056907 DOI: 10.1021/acs.jproteome.0c01019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) is one of the most malignant cancers in the world, but currently, it lacks effective noninvasive biomarkers to assist its early diagnosis. Our study aims to discover potential serum diagnostic biomarkers for LC. In our study, untargeted serum metabolomics of a discovery cohort and targeted analysis of a test cohort were performed based on gas chromatography-mass spectrometry. Both univariate and multivariate statistical analyses were employed to screen for differential metabolites between LC and healthy control (HC), followed by the selection of candidate biomarkers through multiple algorithms. The results showed that 15 metabolites were significantly dysregulated between LC and HC, and a panel, comprising cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid, was demonstrated to have excellent differentiating capability for LC based on multiple classification modelings. In addition, the molecular interaction analysis combined with transcriptomics revealed a close correlation between the candidate biomarkers and LC proliferation via a Ca2+ signaling pathway. Our study discovered that cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid in combination could be a promising diagnostic biomarker for LC, and most importantly, our results will shed some light on the pathophysiological mechanism underlying LC to understand it deeply. The data that support the findings of this study are openly available in MetaboLights at https://www.ebi.ac.uk/metabolights/, reference number MTBLS1517.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Cardiothoracic Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Zhuoru He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Centre, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, PR China
| | - Xinjie Huang
- Department of Cardiothoracic Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Wei Zhu
- Department of Cardiothoracic Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
4
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|