1
|
Bakinowska E, Krompiewski M, Boboryko D, Kiełbowski K, Pawlik A. The Role of Inflammatory Mediators in the Pathogenesis of Obesity. Nutrients 2024; 16:2822. [PMID: 39275140 PMCID: PMC11396809 DOI: 10.3390/nu16172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity is a pandemic of the 21st century, and the prevalence of this metabolic condition has enormously increased over the past few decades. Obesity is associated with a number of comorbidities and complications, such as diabetes and cardiovascular disorders, which can be associated with severe and fatal outcomes. Adipose tissue is an endocrine organ that secretes numerous molecules and proteins that are capable of modifying immune responses. The progression of obesity is associated with adipose tissue dysfunction, which is characterised by enhanced inflammation and apoptosis. Increased fat-tissue mass is associated with the dysregulated secretion of substances by adipocytes, which leads to metabolic alterations. Importantly, the adipose tissue contains immune cells, the profile of which changes with the progression of obesity. For instance, increasing fat mass enhances the presence of the pro-inflammatory variants of macrophages, major sources of tumour necrosis factor α and other inflammatory mediators that promote insulin resistance. The pathogenesis of obesity is complex, and understanding the pathophysiological mechanisms that are involved may provide novel treatment methods that could prevent the development of serious complications. The aim of this review is to discuss current evidence describing the involvement of various inflammatory mediators in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariusz Krompiewski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Little K, Singh A, Del Marco A, Llorián-Salvador M, Vargas-Soria M, Turch-Anguera M, Solé M, Bakker N, Scullion S, Comella JX, Klaassen I, Simó R, Garcia-Alloza M, Tiwari VK, Stitt AW. Disruption of cortical cell type composition and function underlies diabetes-associated cognitive decline. Diabetologia 2023; 66:1557-1575. [PMID: 37351595 PMCID: PMC10317904 DOI: 10.1007/s00125-023-05935-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 06/24/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. METHODS Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. RESULTS Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db/db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. CONCLUSIONS/INTERPRETATION Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. DATA AVAILABILITY The single-cell sequencing data that supports this study are available at GEO accession GSE217665 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217665 ).
Collapse
Affiliation(s)
- Karis Little
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aditi Singh
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Angel Del Marco
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - María Llorián-Salvador
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mireia Turch-Anguera
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Montse Solé
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Scullion
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Joan X Comella
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación en Red en Enfermedades Neurodegenerativas (CIBERNED - ISCII), Madrid, Spain
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Rafael Simó
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM-ISCIII), Madrid, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Vijay K Tiwari
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| | - Alan W Stitt
- The Wellcome‑Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
3
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
4
|
Pan X, Chen X, Ren L, Li Z, Chen S. Correlation of Obesity and Overweight with Cervical Vascular Function Among Healthy Populations. Diabetes Metab Syndr Obes 2022; 15:2927-2938. [PMID: 36186940 PMCID: PMC9521237 DOI: 10.2147/dmso.s383880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To study the effects of obesity and overweight on carotid vascular function among healthy populations by carotid ultrasound (CAU) and transcranial Doppler (TCD). MATERIALS AND METHODS Basic clinical characteristics, CAU and TCD parameters were collected from recruited healthy individuals. Firstly, all participants were divided into three groups: normal, overweight and obese. Then, the variability of basic clinical characteristics and lipids between the three groups was calculated. Subsequently, CAU and TCD parameters were compared between the three groups. Finally, the correlation between body mass index (BMI) and neck vascular function was analyzed. RESULTS A total of 613 healthy participants were included, of whom 241 were normal, 264 were overweight, and 108 were obese. Overweight and obesity significantly decreased systolic, diastolic and mean flow velocities in the basilar, vertebral and internal carotid arteries, but had no effect on pulsatility index. In addition, BMI was significantly negatively correlated with systolic, diastolic, and mean flow velocities in the basilar, vertebral, and internal carotid arteries, and remained correlated after adjusting for other factors. There was no effect of overweight and obesity on carotid plaques. CONCLUSION Our study revealed that overweight and obesity decreased carotid vascular flow velocity and showed a decreasing trend in vascular flow velocity with increasing BMI. Overweight and obesity appear to have no effect on carotid plaques.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyi Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lin Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Correspondence: Shuchun Chen, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China, Tel/Fax +86 31185988406, Email
| |
Collapse
|