1
|
Chen CC, Peng SJ, Chou YH, Lee CY, Lee PH, Hu RH, Ho MC, Chung MH, Hsiao FT, Tien YW, Tang SC. Human liver afferent and efferent nerves revealed by 3-D/Airyscan super-resolution imaging. Am J Physiol Endocrinol Metab 2024; 326:E107-E123. [PMID: 38170164 DOI: 10.1152/ajpendo.00205.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.
Collapse
Affiliation(s)
- Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital-Yunlin Branch, Yunlin, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Liao ZX, Hsu SH, Tang SC, Kempson I, Yang PC, Tseng SJ. Potential targeting of the tumor microenvironment to improve cancer virotherapy. Pharmacol Ther 2023; 250:108521. [PMID: 37657673 DOI: 10.1016/j.pharmthera.2023.108521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In 2015, oncolytic virotherapy was approved for clinical use, and in 2017, recombinant adeno-associated virus (AAV) delivery was also approved. However, systemic administration remains challenging due to the limited number of viruses that successfully reach the target site. Although the US Food and Drug Administration (FDA) permits the use of higher doses of AAV to achieve greater rates of transduction, most AAV still accumulates in the liver, potentially leading to toxicity there and elsewhere. Targeting the tumor microenvironment is a promising strategy for cancer treatment due to the critical role of the tumor microenvironment in controlling tumor progression and influencing the response to therapies. Newly discovered evidence indicates that administration routes focusing on the tumor microenvironment can promote delivery specificity and transduction efficacy within the tumor. Here, we review approaches that involve modifying viral surface features, modulating the immune system, and targeting the physicochemical characteristics in tumor microenvironment to regulate therapeutic delivery. Targeting tumor acidosis presents advantages that can be leveraged to enhance virotherapy outcomes and to develop new therapeutic approaches that can be integrated with standard treatments.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - S Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan; Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
3
|
Hsiao FT, Chien HJ, Chou YH, Peng SJ, Chung MH, Huang TH, Lo LW, Shen CN, Chang HP, Lee CY, Chen CC, Jeng YM, Tien YW, Tang SC. Transparent tissue in solid state for solvent-free and antifade 3D imaging. Nat Commun 2023; 14:3395. [PMID: 37296117 PMCID: PMC10256715 DOI: 10.1038/s41467-023-39082-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Optical clearing with high-refractive-index (high-n) reagents is essential for 3D tissue imaging. However, the current liquid-based clearing condition and dye environment suffer from solvent evaporation and photobleaching, causing difficulties in maintaining the tissue optical and fluorescent features. Here, using the Gladstone-Dale equation [(n-1)/density=constant] as a design concept, we develop a solid (solvent-free) high-n acrylamide-based copolymer to embed mouse and human tissues for clearing and imaging. In the solid state, the fluorescent dye-labeled tissue matrices are filled and packed with the high-n copolymer, minimizing scattering in in-depth imaging and dye fading. This transparent, liquid-free condition provides a friendly tissue and cellular environment to facilitate high/super-resolution 3D imaging, preservation, transfer, and sharing among laboratories to investigate the morphologies of interest in experimental and clinical conditions.
Collapse
Affiliation(s)
- Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Tzu-Hui Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Lo
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Pi Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|