1
|
Liu C, Fan L, Guan M, Zheng Q, Jin J, Kang X, Gao Z, Deng X, Shen Y, Chu G, Chen J, Yu Z, Zhou L, Wang Y. A Redox Homeostasis Modulatory Hydrogel with GLRX3 + Extracellular Vesicles Attenuates Disc Degeneration by Suppressing Nucleus Pulposus Cell Senescence. ACS NANO 2023. [PMID: 37432866 DOI: 10.1021/acsnano.3c01713] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Characterized by nucleus pulposus (NP) cell senescence and extracellular matrix (ECM) degradation, disc degeneration is a common pathology for various degenerative spinal disorders. To date, effective treatments for disc degeneration are absent. Here, we found that Glutaredoxin3 (GLRX3) is an important redox-regulating molecule associated with NP cell senescence and disc degeneration. Using a hypoxic preconditioning method, we developed GLRX3+ mesenchymal stem cell-derived extracellular vehicles (EVs-GLRX3), which enhanced the cellular antioxidant defense, thus preventing reactive oxygen species (ROS) accumulation and senescence cascade expansion in vitro. Further, a disc tissue-like biopolymer-based supramolecular hydrogel, which was injectable, degradable, and ROS-responsive, was proposed to deliver EVs-GLRX3 for treating disc degeneration. Using a rat model of disc degeneration, we demonstrated that the EVs-GLRX3-loaded hydrogel attenuated mitochondrial damage, alleviated the NP senescence state, and restored ECM deposition by modulating the redox homeostasis. Our findings suggested that modulation of redox homeostasis in the disc can rejuvenate NP cell senescence and thus attenuate disc degeneration.
Collapse
Affiliation(s)
- Can Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ming Guan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiangqiang Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinchang Kang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongyang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoqian Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yifan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingyao Chen
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
2
|
Cheng N, Donelson J, Breton G, Nakata PA. Liver specific disruption of Glutaredoxin 3 leads to iron accumulation and impaired cellular iron homeostasis. Biochem Biophys Res Commun 2023; 649:39-46. [PMID: 36739698 DOI: 10.1016/j.bbrc.2023.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
The role mammalian glutaredoxin 3 (Grx3) plays in iron homeostasis is poorly understood. Here we report the generation and characterization of a Grx3 liver-specific knockout (LKO) mouse strain. Grx3 LKO and WT mice had similar growth however, the LKO mice had elevated iron concentration and ROS production leading to impaired liver function and altered cytosolic and nuclear Fe-S cluster assembly. The expression of hepatic FTH1 and other iron homeostasis genes appeared to correlate with the elevation in iron concentration. Interestingly, this increase in hepatic FTH1 showed an inverse correlation with the abundance of autophagy pathway proteins. These findings suggest a crucial role for Grx3 in regulating hepatocyte iron homeostasis by controlling cellular storage protein turnover and recycling via the autophagy pathway.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Jimmonique Donelson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol 2021; 43:101975. [PMID: 33932870 PMCID: PMC8102999 DOI: 10.1016/j.redox.2021.101975] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Glutaredoxin, Grx, is a small protein containing an active site cysteine pair and was discovered in 1976 by Arne Holmgren. The Grx system, comprised of Grx, glutathione, glutathione reductase, and NADPH, was first described as an electron donor for Ribonucleotide Reductase but, from the first discovery in E.coli, the Grx family has impressively grown, particularly in the last two decades. Several isoforms have been described in different organisms (from bacteria to humans) and with different functions. The unique characteristic of Grxs is their ability to catalyse glutathione-dependent redox regulation via glutathionylation, the conjugation of glutathione to a substrate, and its reverse reaction, deglutathionylation. Grxs have also recently been enrolled in iron sulphur cluster formation. These functions have been implied in various physiological and pathological conditions, from immune defense to neurodegeneration and cancer development thus making Grx a possible drug target. This review aims to give an overview on Grxs, starting by a phylogenetic analysis of vertebrate Grxs, followed by an analysis of the mechanisms of action, the specific characteristics of the different human isoforms and a discussion on aspects related to human physiology and diseases.
Collapse
Affiliation(s)
- Fernando T Ogata
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Rua Mirassol, 207. 04044-010, São Paulo - SP, Brazil
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, SE-17165, Stockholm, Sweden.
| |
Collapse
|
5
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
6
|
Donelson J, Wang Q, Monroe TO, Jiang X, Zhou J, Yu H, Mo Q, Sun Q, Marini JC, Wang X, Nakata PA, Hirschi KD, Wang J, Rodney GG, Wehrens XH, Cheng N. Cardiac-specific ablation of glutaredoxin 3 leads to cardiac hypertrophy and heart failure. Physiol Rep 2019; 7:e14071. [PMID: 31033205 PMCID: PMC6487472 DOI: 10.14814/phy2.14071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that redox-sensitive proteins including glutaredoxins (Grxs) can protect cardiac muscle cells from oxidative stress-induced damage. Mammalian Grx3 has been shown to be critical in regulating cellular redox states. However, how Grx3 affects cardiac function by modulating reactive oxygen species (ROS) signaling remains unknown. In this study, we found that the expression of Grx3 in the heart is decreased during aging. To assess the physiological role of Grx3 in the heart, we generated mice in which Grx3 was conditionally deleted in cardiomyocytes (Grx3 conditional knockout (CKO) mice). Grx3 CKO mice were viable and grew indistinguishably from their littermates at young age. No difference in cardiac function was found comparing Grx3 CKO mice and littermate controls at this age. However, by the age of 12 months, Grx3 CKO mice exhibited left ventricular hypertrophy with a significant decrease in ejection fraction and fractional shortening along with a significant increase of ROS production in cardiomyocytes compared to controls. Deletion of Grx3 also impaired Ca2+ handling, caused enhanced sarcoplasmic reticulum (SR) calcium (Ca2+ ) leak, and decreased SR Ca2+ uptake. Furthermore, enhanced ROS production and alteration of Ca2+ handling in cardiomyocytes occurred, prior to cardiac dysfunction in young mice. Therefore, our findings demonstrate that Grx3 is an important factor in regulating cardiac hypertrophy and heart failure by modulating both cellular redox homeostasis and Ca2+ handling in the heart.
Collapse
Affiliation(s)
- Jimmonique Donelson
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
| | - Qiongling Wang
- Molecular Physiology & BiophysicsBaylor College of MedicineHoustonTexas
| | - Tanner O. Monroe
- Molecular Physiology & BiophysicsBaylor College of MedicineHoustonTexas
| | - Xiqian Jiang
- Pharmacology and Chemical BiologyBaylor College of MedicineHoustonTexas
- Molecular and Cellular BiologyBaylor College of MedicineHoustonTexas
| | - Jianjie Zhou
- Ministry of Education Key Laboratory of Protein ScienceCenter for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Han Yu
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
| | - Qianxing Mo
- Department of Biostatistics & BioinformaticsH. Lee Moffitt Cancer Center & Research InstituteTampaFlorida
| | - Qin Sun
- Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Juan C. Marini
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
- Section of Critical Care MedicineDepartment of PediatricsBaylor College of MedicineHoustonTexas
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein ScienceCenter for Structural BiologySchool of Life SciencesTsinghua UniversityBeijingChina
| | - Paul A. Nakata
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
| | - Kendal D. Hirschi
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
| | - Jin Wang
- Pharmacology and Chemical BiologyBaylor College of MedicineHoustonTexas
- Molecular and Cellular BiologyBaylor College of MedicineHoustonTexas
- Center for Drug DiscoveryDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - George G. Rodney
- Molecular Physiology & BiophysicsBaylor College of MedicineHoustonTexas
| | - Xander H.T. Wehrens
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
- Molecular Physiology & BiophysicsBaylor College of MedicineHoustonTexas
- Cardiovascular Research InstituteBaylor College of MedicineHoustonTexas
| | - Ninghui Cheng
- USDA/ARS Children Nutrition Research CenterDepartment of PediatricsBaylor College of MedicineHoustonTexas
| |
Collapse
|
7
|
Ji Z, Chao T, Zhang C, Liu Z, Hou L, Wang J, Wang A, Wang Y, Zhou J, Xuan R, Wang G, Wang J. Transcriptome Analysis of Dairy Goat Mammary Gland Tissues from Different Lactation Stages. DNA Cell Biol 2019; 38:129-143. [DOI: 10.1089/dna.2018.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Chunlan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Zhaohua Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Yong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jie Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, P.R. China
| |
Collapse
|
8
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|