1
|
Du Y, Chi X, Chen Q, Xiao Y, Ma Z, Wang Z, Guo Z, Chen P, Chen Z, Zhang M, Guo J, Zhou Y, Yang C. Investigating the Mechanism of Banxia Xiexin Decoction in Treating
Gastritis and Diabetes Mellitus through Network Pharmacology and
Molecular Docking Analysis. CURRENT DRUG THERAPY 2024; 19:878-897. [DOI: 10.2174/0115748855287070240409061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 01/03/2025]
Abstract
Background:
Banxia Xiexin decoration (BXD), a complex prescription in Traditional Chinese
Medicine (TCM), clinically acts as a treatment for gastritis and diabetes while its mechanism of
treatment remains unknown.
Objection:
This study aimed to explore the common mechanism of BXD in treating gastritis and
diabetes based on network pharmacology and molecular docking technology.
Methods:
The seven Chinese herbal components and drug targets were collected from the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) for gastritis and
diabetes using GeneCards, DisGeNET, Comparative Toxicogenomics Database (CTD), and Online
Mendelian Inheritance in Man (OMIM) databases. Common drug and disease targets were imported
into the STRING data platform for protein-protein interaction (PPI) analysis, and Cytoscape 3.7.2
software for network topology analysis, and core targets were filtered.
Results:
There were 124 components, 249 targets, 449 targets for gastritis, and 4005 targets for diabetes.
After mapping, 83 BXD targets for gastritis and diabetes were obtained, and the targets with
high correlation were STAT 3, JUN, TNF, IL-6, etc. More relevant targets were involved in the cancer
pathway, AGE-RAGE signaling pathway of diabetic complications, fluid shear stress, and atherosclerosis
pathway.
Conclusion:
This study preliminarily reveals that BXD may play a role in the treatment of gastritis
and diabetes mellitus through multi-components, multi-targets, and multi-pathways, and proposes
some potential "component-target-pathway" hypotheses in light of previous reports.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, People's Republic of China
| | - Xianhong Chi
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Qianwen Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yue Xiao
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhendong Ma
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhuoming Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Peng Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zilin Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Mengting Zhang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Jinyan Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Chun Yang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| |
Collapse
|
2
|
Zheng M, Zhao F. The IL-12 family of heterodimeric cytokines in polycystic ovarian syndrome: biological role in induction, regulation, and treatment. Immunol Res 2024; 72:583-591. [PMID: 38771486 DOI: 10.1007/s12026-024-09487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a diverse endocrine disorder widely recognized as the prevailing metabolic condition among women in their reproductive years. The precise pathophysiological mechanisms underlying PCOS remain incompletely understood. However, existing evidence suggests that the development of PCOS may be linked to factors such as abdominal obesity, hyperandrogenism, and insulin resistance (IR). Excessive central adiposity in women with PCOS may lead to the development of a chronic, low-grade inflammation characterized by the activation of proinflammatory cytokines. The cytokines that belong to the IL-12 family are a collection of distinct heterodimeric cytokines that include IL-12, IL-23, IL-27, and IL-35. Recent research has provided further evidence regarding the significance of IL-12 cytokines in influencing both innate and adaptive immune responses in different diseases. Additionally, these studies have discovered diverse roles for certain members of the IL-12 family, encompassing multiple immunological functions that can either act as effectors or regulators. In this discourse, we examine the distinctive and atypical structural and functional attributes of this particular cytokine family. This study aims to offer a comprehensive overview of the pathophysiological significance of the IL-12 family cytokines in PCOS patients. Additionally, the therapeutic potential of the cytokines as novel approaches for PCOS treatment will be proposed.
Collapse
Affiliation(s)
- Mingyan Zheng
- Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Feng Zhao
- Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China.
| |
Collapse
|
3
|
Chen W, Liao B, Yun C, Zhao M, Pang Y. Interlukin-22 improves ovarian function in polycystic ovary syndrome independent of metabolic regulation: a mouse-based experimental study. J Ovarian Res 2024; 17:100. [PMID: 38734641 PMCID: PMC11088773 DOI: 10.1186/s13048-024-01428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder with multiple metabolic abnormalities. Most PCOS patients have concomitant metabolic syndromes such as insulin resistance and obesity, which often lead to the development of type II diabetes and cardiovascular disease with serious consequences. Current treatment of PCOS with symptomatic treatments such as hormone replacement, which has many side effects. Research on its origin and pathogenesis is urgently needed. Although improving the metabolic status of the body can alleviate reproductive function in some patients, there is still a subset of patients with metabolically normal PCOS that lacks therapeutic tools to address ovarian etiology. METHODS The effect of IL-22 on PCOS ovarian function was verified in a non-metabolic PCOS mouse model induced by dehydroepiandrosterone (DHEA) and rosiglitazone, as well as granulosa cell -specific STAT3 knockout (Fshrcre+Stat3f/f) mice (10 groups totally and n = 5 per group). Mice were maintained under controlled temperature and lighting conditions with free access to food and water in a specific pathogen-free (SPF) facility. Secondary follicles separated from Fshrcre+Stat3f/f mice were cultured in vitro with DHEA to mimic the hyperandrogenic environment in PCOS ovaries (4 groups and n = 7 per group) and then were treated with IL-22 to investigate the specific role of IL-22 on ovarian function. RESULTS We developed a non-metabolic mice model with rosiglitazone superimposed on DHEA. This model has normal metabolic function as evidenced by normal glucose tolerance without insulin resistance and PCOS-like ovarian function as evidenced by irregular estrous cycle, polycystic ovarian morphology (PCOM), abnormalities in sex hormone level. Supplementation with IL-22 improved these ovarian functions in non-metabolic PCOS mice. Application of DHEA in an in vitro follicular culture system to simulate PCOS follicular developmental block and ovulation impairment. Follicles from Fshrcre+Stat3f/f did not show improvement in POCS follicle development with the addition of IL-22. In DHEA-induced PCOS mice, selective ablation of STAT3 in granulosa cells significantly reversed the ameliorative effect of IL-22 on ovarian function. CONCLUSION IL-22 can improve non-metabolic PCOS mice ovarian function. Granulosa cells deficient in STAT3 reverses the role of IL-22 in alleviating ovary dysfunction in non-metabolic PCOS mice.
Collapse
Affiliation(s)
- Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
4
|
Liu H, Fang X, Ma Q, Wang M, Hao X, Wang G. Research hotspots of polycystic ovary syndrome and hyperandrogenism from 2008 to 2022: bibliometric analysis. Gynecol Endocrinol 2024; 40:2326102. [PMID: 38654639 DOI: 10.1080/09513590.2024.2326102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is the most frequent endocrine disorder in female adults, and hyperandrogenism (HA) is the typical endocrine feature of PCOS. This study aims to investigate the trends and hotspots in the study of PCOS and HA. METHODS Literature on Web of Science Core Collection (WoSCC) from 2008 to 2022 was retrieved, and bibliometric analysis was conducted using VOSviewer and CiteSpace software. RESULTS A total of 2,404 papers were published in 575 journals by 10,121 authors from 2,434 institutions in 86 countries. The number of publications in this field is generally on the rise yearly. The US, China and Italy contributed almost half of the publications. Monash University had the highest number of publications, while the University of Adelaide had the highest average citations and the Karolinska Institute had the strongest cooperation with other institutions. Lergo RS contributed the most to the field of PCOS and HA. The research on PCOS and HA mainly focused on complications, adipose tissue, inflammation, granulosa cells, gene and receptor expression. CONCLUSION Different countries, institutions, and authors should facilitate cooperation and exchanges. This study will be helpful for better understanding the frontiers and hotspots in the areas of PCOS and HA.
Collapse
Affiliation(s)
- Haijuan Liu
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoting Fang
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qianru Ma
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Xiufang Hao
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Wang
- Department of Gynecology, Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Zheng CY, Yu YX, Bai X. Polycystic ovary syndrome and related inflammation in radiomics; relationship with patient outcome. Semin Cell Dev Biol 2024; 154:328-333. [PMID: 36933953 DOI: 10.1016/j.semcdb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) refers to a condition that often has 'poly' liquid containing sacks around ovaries. It affects reproductive-aged females giving rise to menstrual and related reproductive issues. PCOS is marked by hormonal imbalance often resulting in hyperandrogenism. Inflammation is now considered a central manifestation of this disease with several inflammatory biomarkers such as TNF-α, C-reactive protein and Interleukins-6/18 found to be particularly elevated in PCOS patients. Diagnosis is often late, and MRI-based diagnosis, along with blood-based analyses, are still the best bet for a definitive diagnosis. Radiomics also offers several advantages and should be exploited to the maximum. The mechanisms of PCOS onset and progression are not very well known but pituitary dysfunction and elevated gonadotrophin releasing hormone resulting in high levels of luteinizing hormone are indicative of an activated hypothalamic-pituitary-ovarian axis in PCOS. A number of studies have also identified signaling pathways such as PI3K/Akt, NF-κB and STAT in PCOS etiology. The links of these signaling pathways to inflammation further underline the importance of inflammation in PCOS, which needs to be resolved for improving patient outcomes.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
6
|
Gao Z, Tan H, Song X, Zhuang T, Kong R, Wang Y, Yan X, Yao R. Troxerutin dampened hypothalamic neuroinflammation via microglial IL-22/IL-22R1/IRF3 activation in dihydrotestosterone-induced polycystic ovary syndrome rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155280. [PMID: 38183697 DOI: 10.1016/j.phymed.2023.155280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.
Collapse
Affiliation(s)
- Zixuan Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China; Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Xuzhou Medical University, 388 Fuxing South Road, Xuzhou 221000, PR China
| | - Huihui Tan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Tao Zhuang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China
| | - Yuying Wang
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Xuzhou Medical University, 388 Fuxing South Road, Xuzhou 221000, PR China
| | - Xiaonan Yan
- Clinical Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University,199 Jiefang South Road, Xuzhou 221000, PR China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221009, PR China.
| |
Collapse
|
7
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|