1
|
Li W, Wang W, Zhang M, Chen Q, Li F, Li S. The assessment of marrow adiposity in type 1 diabetic rabbits through magnetic resonance spectroscopy is linked to bone resorption. Front Endocrinol (Lausanne) 2025; 15:1518656. [PMID: 39926390 PMCID: PMC11803209 DOI: 10.3389/fendo.2024.1518656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Background Enhanced marrow adiposity is frequently linked with a decline in bone density. The underlying mechanisms responsible for bone loss in diabetes are not well understood. In this investigation, we employed an alloxan-induced diabetes rabbit model to unravel the association between marrow fat content and bone resorption, utilizing magnetic resonance spectroscopy. Methods Forty 4-month-old male New Zealand rabbits were randomly allocated into two groups: a control group and an alloxan-induced diabetic group, each consisting of 20 rabbits. Biochemical analyses covered plasma glucose, enzyme levels, lipid profiles, blood urea nitrogen, creatinine levels, and markers of bone turnover. Quantification of bone marrow adipose tissue utilized both MR spectroscopy and histological examinations. Dual-energy X-ray absorptiometry and microcomputed tomography were employed to determine bone density and trabecular bone microarchitectures. The expression levels of marrow adipocyte markers (peroxisome proliferator-activated receptor-gamma2, CCAAT/enhancer-binding protein-α, and fatty acid binding protein 4) and markers of bone resorption [tartrate-resistant acid phosphatase (TRACP) and cathepsin K] were assessed using RT-PCR. Results Diabetic rabbits exhibited significant increases in marrow fat fraction (MFF) over time (MFF increased by 13.2% at 1.5 months and 24.9% at 3 months relative to baseline conditions, respectively). These changes were accompanied by the deterioration of trabecular microarchitectures. Marrow adipogenesis was evident through a 31.0% increase in adipocyte size, a 60.0% rise in adipocyte number, a 103.3% increase in the percentage of adipocyte area, and elevated mRNA expressions of marrow adipocyte markers. Osteoclast markers (TRACP and cathepsin K RNA and serum TRACP5b levels) were elevated in diabetic rabbits. MFF exhibited a robust correlation with trabecular bone microarchitectures. A significant positive correlation was identified between ΔMFF and serum ΔTRACP5b levels. Moreover, MFF at 3 months showed a strong positive correlation with serum TRACP5b levels (r = 0.763), as well as with the mRNA expression of osteoclast markers, including TRACP (r = 0.784) and cathepsin K (r = 0.659), all with p <0.001. Conclusions Rabbits with type 1 diabetes experience an expansion of marrow adiposity, and this enhanced marrow adiposity is associated with increased osteoclast activity.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wei Wang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qi Chen
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Fengyi Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shaojun Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
2
|
Rinotas V, Gkikopoulou E, Tzortzis E, Kritikos K, Siatra P, Papadopoulos A, Perivolidi VI, Douni E. Interplay between bone marrow adiposity and bone resorption in RANKL-mediated modelled osteoporosis. J Cell Physiol 2024; 239:e31434. [PMID: 39279218 DOI: 10.1002/jcp.31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Evi Gkikopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Efthymiοs Tzortzis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Kritikos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Panagiota Siatra
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Apostolos Papadopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vasiliki-Iris Perivolidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Li X, Zuo X, Lu L, Xu R, Wang Y, Chang S, Wang Y, Luo P, Li G. Vertebral marrow fat fraction is associated with circulating RANKL in postmenopausal females. Front Endocrinol (Lausanne) 2024; 15:1442046. [PMID: 39351524 PMCID: PMC11439683 DOI: 10.3389/fendo.2024.1442046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Objective To investigate the relationship between circulating receptor activator of nuclear factor-kappa B ligand (RANKL) levels and marrow adipose tissue in postmenopausal females. Methods A total of 164 postmenopausal females were included in the study. Serum levels of osteoprotegerin (OPG) and RANKL were measured using ELISA kits. Body composition and bone mineral density (BMD) were assessed using dual-energy X-ray absorptiometry. Complex-based chemical shift imaging-based MRI was employed to evaluate the vertebral marrow proton density fat fraction (PDFF). A multivariate linear regression model was utilized to analyze the predictive effects of PDFF and BMD on circulating levels of OPG and RANKL. Results Simple regression analysis showed significant associations among the marrow PDFF, BMD at either site, serum RANKL, and the RANKL/OPG ratio. In multivariate linear regression models, marrow PDFF was found to have a positive correlation (β = 3.15, 95% CI 2.60 to 3.70) and BMD had negative correlations (β = -0.200, 95% CI -0.348 to -0.051 for vertebral BMD; β = -0.383, 95% CI -0.589 to -0.177 for total hip BMD; and β =-0.393, 95% CI -0.598 to -0.188 for femoral neck BMD, all p < 0.01) with circulating soluble RANKL levels after adjusting for age, body mass index, physical activity, total fat mass, android/gynoid ratio, and lean mass. Similar results were observed for the RANKL/OPG ratio. Additionally, multivariate linear regression analyses revealed that marrow PDFF was a significant independent contributor of circulating soluble RANKL (β = 1.34, 95% CI 1.10 to 1.58, p < 0.001) after further controlling for BMD. However, marrow PDFF or BMD had no associations with circulating levels of OPG after adjusting for all potential confounders mentioned above. Conclusions Vertebral marrow fat fraction is independently associated with circulating soluble RANKL levels in postmenopausal females.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyong Zuo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Lu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Run Xu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang J, Hu W, Zou Z, Li Y, Kang F, Li J, Dong S. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism. Genes Dis 2024; 11:101122. [PMID: 38523674 PMCID: PMC10958717 DOI: 10.1016/j.gendis.2023.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 03/26/2024] Open
Abstract
In recent years, researchers have become focused on the relationship between lipids and bone metabolism balance. Moreover, many diseases related to lipid metabolism disorders, such as nonalcoholic fatty liver disease, atherosclerosis, obesity, and menopause, are associated with osteoporotic phenotypes. It has been clinically observed in humans that these lipid metabolism disorders promote changes in osteoporosis-related indicators bone mineral density and bone mass. Furthermore, similar osteoporotic phenotype changes were observed in high-fat and high-cholesterol-induced animal models. Abnormal lipid metabolism (such as increased oxidized lipids and elevated plasma cholesterol) affects bone microenvironment homeostasis via cross-organ communication, promoting differentiation of mesenchymal stem cells to adipocytes, and inhibiting commitment towards osteoblasts. Moreover, disturbances in lipid metabolism affect the bone metabolism balance by promoting the secretion of cytokines such as receptor activator of nuclear factor-kappa B ligand by osteoblasts and stimulating the differentiation of osteoclasts. Conclusively, this review addresses the possible link between lipid metabolism disorders and osteoporosis and elucidates the potential modulatory mechanisms and signaling pathways by which lipid metabolism affects bone metabolism balance. We also summarize the possible approaches and prospects of intervening lipid metabolism for osteoporosis treatment.
Collapse
Affiliation(s)
- Jing Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jianmei Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
6
|
Abbas NAT, El-Sayed SS, Abd El-Fatah SS, Sarhan WM, Abdelghany EMA, Sarhan O, Mahmoud SS. Mechanistic aspects of ameliorative effects of Eicosapentanoic acid ethyl ester on methotrexate-evoked testiculopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:357-369. [PMID: 37450014 PMCID: PMC10771366 DOI: 10.1007/s00210-023-02577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Disrupted spermatogenesis and testicular injury are among the devastating outcomes of methotrexate. A major contributor to methotrexate-induced testiculopathy is oxidative damage which triggers apoptosis and altered autophagy responses. Eicosapentaenoic acid ethyl ester (EPA-E) is an antihyperlipidemic derivative of omega-3 fatty acids that exhibited affinity to peroxisome proliferator-activated receptor-γ (PPAR-γ) that possesses both antioxidant and autophagy modulating properties. This is an exploratory study aiming at assessing the effectiveness of EPA-E to alleviate testicular damage induced by methotrexate. The specific exploratory hypothesis of this experiment is: EPA-E administration for 1 week to methotrexate-treated rats reduces testicular damage compared to control rats. As a secondary outcome, we were interested in identifying the implicated mechanism that mediates the action of EPA-E. In adult male Wistar rats, testiculopathy was achieved by a single methotrexate injection (20 mg/kg, ip). Rats received vehicle, EPA-E (0.3 g/kg/day, po) alone or with selective PPAR-γ antagonist (bisphenol A diglycidyl ether, BADGE) at 30 mg/kg/day, ip for 1 week. EPA-E recuperated methotrexate-attenuated serum total testosterone while reduced testicular inflammation and oxidative stress, restoring superoxide dismutase (SOD) while reducing malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methotrexate-induced testicular apoptosis (caspase-3 and p53) was suppressed upon EPA-E treatment. Besides, EPA-E curbed methotrexate-induced abnormal autophagy by downregulating LC3A/B and beclin-1. Interestingly, BADGE-coadministration reversed EPA-E beneficial actions. Collectively, our findings suggest PPAR-γ role in EPA-E-mediated mitigation of methotrexate-evoked testiculopathy via suppression of oxidative stress, apoptosis, as well as abnormal autophagy. Furthermore, EPA-E could be used as a preventive therapy for some testiculopathies mediated by oxidative stress.
Collapse
Affiliation(s)
- Noha A T Abbas
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Walaa M Sarhan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
- Wake Forest Institute of Regenerative Medicine (WFIRM), Winston-Salem, NC, USA
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Omnia Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Shireen S Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| |
Collapse
|
7
|
Fan J, Zhang D, Jiang Y, Yu L, Han B, Qian Z. The effects of PPARγ inhibitor on bones and bone marrow fat in aged glucocorticoid-treated female rats. Exp Gerontol 2023; 181:112281. [PMID: 37659742 DOI: 10.1016/j.exger.2023.112281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Progressive bone marrow (BM) fat accumulation is a common bone loss characteristic in older populations and glucocorticoid (GC)-induced skeletal destruction that is inversely associated with bone synthesis and directly associated with increased peroxisomal proliferator-activated receptor gamma (PPARγ) expression. PPARγ inhibition is an efficient therapeutic strategy for aged- and GC-related skeletal disorders. This study aimed to evaluate the effect of PPARγ inhibition on aged GC-treated female rats. It was hypothesised that bisphenol A diglycidyl ether (BADGE) could inhibit marrow adiposity and improve osteogenesis by inhibiting PPARγ, thereby preventing GC-induced osteoporosis (GIO). Female Sprague-Dawley rats (n = 32, age = 18 months) were randomly allocated to one of the following groups: (1) control, (2) BADGE (30 mg/kg/day, intraperitoneal), (3) methylprednisolone (MP; 30 mg/kg/day, subcutaneous), and (4) MP + BADGE. After eight weeks of treatment, bone density (BD) and trabecular bone microarchitectures were quantified by micro-computed tomography (CT), and BM adipocytes were quantified by histopathology. Additionally, mRNA and protein expression of adipogenic and osteogenic markers were quantified by reverse transcription-quantitative polymerase chain reaction. Furthermore, serum bone turnover biomarker levels were quantified by enzyme-linked immunosorbent assay. MP treatment led to marrow adipogenesis and bone deterioration. However, rats treated with MP + BADGE showed lower marrow adipogenesis, as indicated by smaller marrow adipocyte diameter, decreased density and area percentages, reduced expression of marrow adipogenic genes and proteins, improved BD and trabecular microarchitectures, increased expression of osteogenic genes and proteins, and higher levels of serum bone formation markers. These results were consistent with the differences observed between control and BADGE mono-treated rats. In conclusion, BADGE treatment attenuates BM adiposity and improves bone formation in aged GC-treated female rats by inhibiting PPARγ. Therefore, PPARγ might be a potential target for treating GIO in older populations.
Collapse
Affiliation(s)
- Jingzheng Fan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yuyan Jiang
- Department of Nuclear medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lechang Yu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bin Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| |
Collapse
|
8
|
Liu Y, Tan H, Huang C, Li L, Wu S. Olive oil effectively mitigates ovariectomy-induced marrow adiposity assessed by MR spectroscopy in estrogen-deficient rabbits. Acta Radiol 2022; 63:245-252. [PMID: 33497273 DOI: 10.1177/0284185120986937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Polyphenols in extra virgin olive oil (EVOO) have been found to reduce the expression of PPARγ2, inhibit adipocyte differentiation, and enhance the formation of osteoblasts from bone marrow stem cells. However, the underlying mechanisms of their action remain unknown. PURPOSE To determine the sequential effects of EVOO on marrow fat expansion induced by estrogen deprivation using 3.0-T proton magnetic resonance (MR) spectroscopy in an ovariectomy (OVX) rabbit model of postmenopausal bone loss over a six-month period. MATERIAL AND METHODS A total of 45 female New Zealand rabbits were equally divided into sham-operation, OVX controls, and OVX treated with EVOO for six months. Marrow fat fraction was measured by MR spectroscopy at baseline conditions, and three and six months postoperatively, respectively. Serum bone biomarkers, lumbar and femoral bone mineral density, microtomographic parameters, biomechanical properties, and quantitative parameters of marrow adipocytes were studied. RESULTS OVX was associated with marrow adiposity in a time-dependent manner, accompanied with increased bone turnover and impaired bone mass and trabecular microarchitecture. In OVX rabbits, EVOO markedly alleviated trabecular bone loss and reduced the accumulation of lipid droplets including adipocyte size, density, and areas of fat deposits in the bone marrow. EVOO prevented such changes in terms of both marrow adiposity and bone remodeling. CONCLUSION Early EVOO treatment may exert beneficial effects on bone by modulating marrow adiposity, which would support their protective effect against bone pathologies.
Collapse
Affiliation(s)
- Yin Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Huayi Tan
- Department of Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Can Huang
- Department of Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Lifeng Li
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Sijie Wu
- Department of Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
9
|
Chen L, Ma R, Luo P, Shi D, Shi X, Nian H, Chang SX, Yuan W, Li GW. Effects of Total Flavonoids of Epimedium on Bone Marrow Adipose Tissue in Ovariectomized Rats. Front Endocrinol (Lausanne) 2022; 13:900816. [PMID: 35733771 PMCID: PMC9207204 DOI: 10.3389/fendo.2022.900816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
Bone marrow adipose tissue has brown fat characteristics. Several studies have demonstrated that total flavonoids of Epimedium (TFE) could prevent bone loss and reduce the white adiposity in bone marrow induced by ovariectomy (OVX) in rats. However, the effects of TFE on marrow brown fat in OVX rats remain unclear. In this word, we addressed this question expected to provide a new target for preventing and treating osteoporosis. Thirty-six 3-month-old female Sprague-Dawley rats were equally divided into Sham controls, OVX controls, and OVX treated with TFE. Chemical shift coding magnetic resonance was performed to detect marrow fat fraction at the left femur at baseline, 6 and 12 weeks post-OVX. Bone mineral density at the lumbar spine and femur was measured by dual-energy x-ray absorptiometry. Serum bone biomarkers by ELISA, trabecular bone microarchitecture at the proximal tibia by micro-CT, quantitative parameters of marrow adipocyte by hematoxylin, and eosin staining were evaluated. The marrow adipocyte gene and protein expressions profile were determined by real-time quantitative PCR and immunostaining in whole tibiae. We found that TFE treatment could decrease bone turnover rate and improved bone mineral density and trabecular microarchitecture in OVX rats. OVX resulted in marrow adipogenesis as evidenced by increased marrow fat fraction, larger marrow adipocyte size, increased adipocyte number and percentage of adipocyte area, marrow white adipocyte gene, and protein expression, including PPARγ2 and FABP4. These pathological changes induced by estrogen deficiency were restored by TFE treatment. TFE also increased brown adipocyte expressions of the transcription factor Ucp1 and Prdm16 in whole tibiae. There was no detectible protein expression of brown adipocyte markers in the proximal tibia. Taken together, TFE regulation of bone marrow adiposity in OVX rats is mediated, at least in part, via maintaining the reciprocity of white and brown adipose tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Ma
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Xin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Wei Yuan
- Department of Orthopaedics, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Guan-Wu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| |
Collapse
|
10
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
11
|
Giannattasio R, Lisco G, Giagulli VA, Settembrini S, De Pergola G, Guastamacchia E, Lombardi G, Triggiani V. Bone Disruption and Environmental Pollutants. Endocr Metab Immune Disord Drug Targets 2021; 22:704-715. [PMID: 33461478 DOI: 10.2174/1871530321666210118163538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine Disrupting Chemicals (EDCs) are ubiquitous and may significantly contribute in environmental pollution, thus contaminating humans and wildlife. Environmental pollutants could interfere with bone homeostasis by means of different mechanisms, which include hormonal imbalance, direct osteoblasts toxicity and enanchment of osteoclasts activity, thus leading to osteopenia or osteoporosis. Among these, bisphenols, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, poly- and perfluoroalkyls, phthalates, parabens, organotins and cadmium may play a role in bone distuption. METHODS PubMed/MEDLINE, ISI-web of knowledge and Google scholar databases were searched for medical subject headings terms and free-text word related to the aforementioned classes of chemicals and bone metabolism and remodelling for better clarifying and understanding the main mechanisms of bone disruption. RESULTS Several of EDCs act as xenoestrogens. Considering that estrogens play a significant role in regulating bone remodeling, most of these chemicals generate hormonal imbalance with possible detrimental consequences on bone tissue structure and its mechanical and non-mechanical properties. DISCUSSION A lot of evidences about bone distruptors came from in vitro studies or animal models, and conduct to equivocal results. In addition, a few data derived form humans and most of these data focused on the impact of EDCs on bone mineral density without considering their influence on long-term fracture risk. Moreover, it should be taken into account that humans are exposed to a mixture of EDCs and the final effect on bone metabolism might be the result of either a synergism or antagonist effects among them. Age of first exposure, cumulative dose exposure over time, and the usually observed non-monotonic dose-response curve for EDCs should be considered as other important variable influencing the final effect on bone metabolism. CONCLUSION Taking into account these variables, observational studies are needed to better analyze this issue both for echological purpose and to preserve bone health.
Collapse
Affiliation(s)
- Raffaele Giannattasio
- ASL Napoli 1 Centro, DS 29, SPS San Gennaro, Service of Endocrinology, Via San Gennaro dei Poveri 25, 80136, Naples. Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Silvio Settembrini
- ASL Napoli 1 Centro, DS 26, Metabolic, Endocrine and Diabetes Unit Pellegrini Hospital, Naples. Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | | | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| |
Collapse
|
12
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
13
|
Wang Y, Pan Z, Chen F. Inhibition of PPARγ by bisphenol A diglycidyl ether ameliorates dexamethasone-induced osteoporosis in a mouse model. J Int Med Res 2019; 47:6268-6277. [PMID: 31709877 PMCID: PMC7045685 DOI: 10.1177/0300060519870723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Bisphenol A diglycidyl ether (BADGE) is an antagonist for PPARγ that reduces bone marrow adiposity and increases bone formation in some animal models of osteoporosis and osteonecrosis. However, the effect of BADGE treatment on glucocorticoid-induced osteoporosis is unknown. This study investigated the preventive effects of BADGE on steroid-induced osteoporosis in mice. Methods Thirty-six female C57BL/6J mice were randomly divided into normal (phosphate-buffered saline), model (50 mg/kg dexamethasone sodium phosphate [Dex]), and BADGE (30 mg/kg of BADGE, combined with Dex) groups. All groups received intraperitoneal injections of their treatments, daily for 4 weeks. Protein and mRNA expression levels of gene markers were measured. Micro-computed tomography was used to measure physical parameters of femurs. Bone histomorphology was analyzed by hematoxylin and eosin staining. ELISA was used to measure serum osteocalcin and C-terminal telopeptide of type I collagen (CTX-1). Results Glucocorticoid treatment enlarged the marrow fat, concomitant with bone deterioration; BADGE treatment reversed steroid-induced marrow adiposity. Compared with the model group, BADGE treatment improved bone quality and increased bone volume, while increasing osteogenic markers and reducing adipogenic markers at both mRNA and protein levels; moreover, it reduced serum CTX-1 and increased serum osteocalcin. Conclusion BADGE treatment ameliorates glucocorticoid-induced osteoporosis by inhibiting PPARγ.
Collapse
Affiliation(s)
- Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
14
|
Liu Y, He Y, Wang Q, Guo F, Huang F, Ji L, An T, Qin G. Vitamin D 3 supplementation improves testicular function in diabetic rats through peroxisome proliferator-activated receptor-γ/transforming growth factor-beta 1/nuclear factor-kappa B. J Diabetes Investig 2019; 10:261-271. [PMID: 29953732 PMCID: PMC6400168 DOI: 10.1111/jdi.12886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Vitamin D3 deficiency can lead to male hypogonadism in diabetes mellitus, but the target organs and the mechanism driving the disorder are unclear. This experiment was designed to study the relationship between vitamin D3 deficiency and hypogonadism in diabetes mellitus. MATERIALS AND METHODS Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3 : blank (no vitamin D3 ), low (0.025 μg/kg/day), high (0.1 μg/kg/day), high (0.1 μg/kg/day) and with bisphenol A diglycidyl ether (peroxisome proliferator-activated receptor gamma inhibitor 30 mg/kg/day). They were compared with wild-type rats. RESULTS After 12 weeks, the vitamin D3 supplements had partially restored testicular pathological changes, as shown by reduced testicular fibrosis related to downregulation transforming growth factor beta 1 and apoptosis related to downregulation of nuclear factor kappa B, but not the pituitary gland. The expression of peroxisome proliferator-activated receptor gamma, which can inhibit transforming growth factor beta 1 and nuclear factor kappa B, was significantly increased after treatment with vitamin D3 . CONCLUSIONS These results suggest that treatment with vitamin D3 can improve testicular function in diabetic rats through the peroxisome proliferator-activated receptor gamma/transforming growth factor beta 1/nuclear factor kappa B signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Yanyan He
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Qingzhu Wang
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Feng Guo
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Fengjuan Huang
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Linlin Ji
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Tingting An
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Institute of Clinical Medicinethe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Guijun Qin
- Department of Endocrinology and Metabolismthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| |
Collapse
|
15
|
Beekman KM, Veldhuis-Vlug AG, van der Veen A, den Heijer M, Maas M, Kerckhofs G, Parac-Vogt TN, Bisschop PH, Bravenboer N. The effect of PPARγ inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. Am J Physiol Endocrinol Metab 2019; 316:E96-E105. [PMID: 30457914 DOI: 10.1152/ajpendo.00265.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow adipose tissue (BMAT) increases after menopause, and increased BMAT is associated with osteoporosis and prevalent vertebral fractures. Peroxisome proliferator-activated receptor-γ (PPARγ) activation promotes adipogenesis and inhibits osteoblastogenesis; therefore, PPARγ is a potential contributor to the postmenopausal increase in BMAT and decrease in bone mass. The aim of this study is to determine if PPARγ inhibition can prevent ovariectomy-induced BMAT increase and bone loss in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice ( n = 40) were allocated to four intervention groups: sham surgery (Sham) or ovariectomy (OVX; isoflurane anesthesia) with either vehicle (Veh) or PPARγ antagonist administration (GW9662; 1 mg·kg-1·day-1, daily intraperitoneal injections) for 3 wk. We measured BMAT volume, adipocyte size, adipocyte number. and bone structural parameters in the proximal metaphysis of the tibia using polyoxometalate-based contrast enhanced-nanocomputed topogaphy. Bone turnover was measured in the contralateral tibia using histomorphometry. The effects of surgery and treatment were analyzed by two-way ANOVA. OVX increased the BMAT volume fraction (Sham + Veh: 2.9 ± 2.7% vs. OVX + Veh: 8.1 ± 5.0%: P < 0.001), average adipocyte diameter (Sham + Veh: 19.3 ± 2.6 μm vs. OVX + Veh: 23.1 ± 3.4 μm: P = 0.001), and adipocyte number (Sham + Veh: 584 ± 337cells/μm3 vs. OVX + Veh: 824 ± 113cells/μm3: P = 0.03), while OVX decreased bone volume fraction (Sham + Veh: 15.5 ± 2.8% vs. OVX + Veh: 7.7 ± 1.9%; P < 0.001). GW9662 had no effect on BMAT, bone structural parameters, or bone turnover. In conclusion, ovariectomy increased BMAT and decreased bone volume in C3H/HeJ mice. The PPARγ antagonist GW9662 had no effect on BMAT or bone volume in C3H/HeJ mice, suggesting that BMAT accumulation is regulated independently of PPARγ in C3H/HeJ mice.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Annegreet G Veldhuis-Vlug
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Albert van der Veen
- Department of Physics and Medical Technology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department Cardiology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Martin den Heijer
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
- Department Materials Engineering, KU Leuven , Leuven , Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Chemistry Department, KU Leuven , Leuven , Belgium
| | - Peter H Bisschop
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Nathalie Bravenboer
- Amsterdam Movement Sciences, Research Laboratory Bone and Calcium Metabolism, Department of Clinical Chemistry, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department of Internal Medicine, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
16
|
Li S, Huang B, Jiang B, Gu M, Yang X, Yin Y. Sclerostin Antibody Mitigates Estrogen Deficiency-Inducted Marrow Lipid Accumulation Assessed by Proton MR Spectroscopy. Front Endocrinol (Lausanne) 2019; 10:159. [PMID: 30949129 PMCID: PMC6436376 DOI: 10.3389/fendo.2019.00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 11/25/2022] Open
Abstract
Sclerostin knock-out mice or sclerostin antibody (Scl-Ab) treated wild-type mice displayed decreased marrow adiposity. But the effects of Scl-Ab on estrogen deficiency-induced marrow fat expansion remain elusive. In this work, 45 female New Zealand rabbits were equally divided into sham-operation, ovariectomy controls, and ovariectomy treated with Scl-Ab for 5 months. MR spectroscopy was performed to longitudinally assess marrow fat fraction at baseline conditions, 2.5 and 5 months post-operatively, respectively. We evaluated bone mineral density (BMD), bone structural parameters, serum bone biomarkers, and quantitative parameters of marrow adipocytes. Ovariectomized rabbits markedly exhibited expansion of marrow fat in a time-dependent manner, with a variation of marrow fat fraction (+17.8%) at 2.5 months relative to baseline and it was maintained until 5 months (+30.4%, all P < 0.001), which was accompanied by diminished BMD and deterioration of trabecular microstructure. Compared to sham controls, adipocyte mean diameter, adipocyte density and adipocytes area percentage was increased by 42.9, 68.3, and 108.6% in ovariectomized rabbits, respectively. Scl-Ab treatment increased serum bone formation marker and alleviated the ovariectomy escalation of serum bone resorption marker. It remarkably lessened the ovariectomy-mediated deterioration of BMD, and morphometric characteristics of trabecular bone. Marrow fat fraction was decreased significantly with Scl-Ab to levels matching that of sham-operated controls and correlated positively with reductions in adipocyte mean diameter, percentage adipocyte volume per marrow volume, and adipocyte density. Taken together, early Scl-Ab treatment reverts marrow fat expansion seen in ovariectomized rabbits in addition to having a beneficial effect on bone mass and microstructural properties.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
- *Correspondence: Shaojun Li
| | - Bingcang Huang
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Bo Jiang
- Department of Radiology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Mingjun Gu
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Xiaodan Yang
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| | - Ying Yin
- Department of Endocrinology, The Second Military Medical University Affiliated Gongli Hospital, Shanghai, China
| |
Collapse
|
17
|
Abstract
Bone marrow adipocytes (BMA-) constitute an original and heterogeneous fat depot whose development appears interlinked with bone status throughout life. The gradual replacement of the haematopoietic tissue by BMA arises in a well-ordered way during childhood and adolescence concomitantly to bone growth and continues at a slower rate throughout the adult life. Importantly, BM adiposity quantity is found well associated with bone mineral density (BMD) loss at different skeletal sites in primary osteoporosis such as in ageing or menopause but also in secondary osteoporosis consecutive to anorexia nervosa. Since BMA and osteoblasts originate from a common mesenchymal stem cell, adipogenesis is considered as a competitive process that disrupts osteoblastogenesis. Besides, most factors secreted by bone and bone marrow cells (ligands and antagonists of the WNT/β-catenin pathway, BMP and others) reciprocally regulate the two processes. Hormones such as oestrogens, glucocorticoids, parathyroid and growth hormones that control bone remodelling also modulate the differentiation and the activity of BMA. Actually, BMA could also contribute to bone loss through the release of paracrine factors altering osteoblast and/or osteoclast formation and function. Based on clinical and fundamental studies, this review aims at presenting and discussing these current arguments that support but also challenge the involvement of BMA in the bone mass integrity.
Collapse
Affiliation(s)
- Tareck Rharass
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| | - Stéphanie Lucas
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| |
Collapse
|
18
|
Magnetic Resonance Spectroscopy for Evaluating the Effect of Pulsed Electromagnetic Fields on Marrow Adiposity in Postmenopausal Women With Osteopenia. J Comput Assist Tomogr 2018; 42:792-797. [PMID: 29901507 DOI: 10.1097/rct.0000000000000757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Pulsed electromagnetic fields (PEMFs) could promote osteogenic differentiation and suppress adipogenic differentiation in bone mesenchymal stem cells ex vivo. However, data on the effect of PEMF on marrow adiposity in humans remain elusive. We aimed to determine the in vivo effect of PEMF on marrow adiposity in postmenopausal women using magnetic resonance spectroscopy. METHODS Sixty-one postmenopausal women with osteopenia, aged 53 to 85 years, were randomly assigned to receive either PEMF treatment or placebo. The session was performed 3 times per week for 6 months. All women received adequate dietary calcium and vitamin D. Bone mineral density (BMD) by dual-energy x-ray absorptiometry, vertebral marrow fat content by magnetic resonance spectroscopy, and serum biomarkers were evaluated before and after 6 months of treatment. RESULTS A total of 27 (87.1%) and 25 (83.3%) women completed the treatment schedule in the PEMF and placebo groups, respectively. After the 6-month treatment, lumbar spine and hip BMD increased by 1.46% to 2.04%, serum bone-specific alkaline phosphatase increased by 3.23%, and C-terminal telopeptides of type 1 collagen decreased by 9.12% in the PEMF group (P < 0.05), whereas the mean percentage changes in BMD and serum biomarkers were not significant in the placebo group. Pulsed electromagnetic field treatment significantly reduced marrow fat fraction by 4.81%. The treatment difference between the 2 groups was -4.43% (95% confidence interval, -3.70% to -5.65%; P = 0.009). CONCLUSIONS Pulsed electromagnetic field is an effective physiotherapy in postmenopausal women, and this effect may, at least in part, regulate the amount of fat within the bone marrow. Magnetic resonance spectroscopy may serve as a complementary imaging biomarker for monitoring response to therapy in osteoporosis.
Collapse
|
19
|
Chin KY, Pang KL, Mark-Lee WF. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health. Int J Med Sci 2018; 15:1043-1050. [PMID: 30013446 PMCID: PMC6036156 DOI: 10.7150/ijms.25634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor which can bind to the oestrogen receptor. It also possesses oestrogenic, antiandrogenic, inflammatory and oxidative properties. Since bone responds to changes in sex hormones, inflammatory and oxidative status, BPA exposure could influence bone health in humans. This review aimed to summarize the current evidence on the relationship between BPA and bone health derived from cellular, animal and human studies. Exposure to BPA (0.5-12.5 µM) decreased the proliferation of osteoblast and osteoclast precursor cells and induce their apoptosis. Bisphenol AF (10 nM) enhanced transforming growth factor beta signalling but bisphenol S (10 nM) inhibited Wnt signalling involved in osteoblast differentiation in vitro. In animals, BPA and its derivatives demonstrated distinct effects in different models. In prenatal/postnatal exposure, BPA increased femoral bone mineral content in male rats (at 25 ug/kg/day) but decreased femoral mechanical strength in female mice (at 10 µg/kg/day). In oestrogen deficiency models, BPA improved bone mineral density and microstructures in aromatase knockout mice (at very high dose, 0.1% or 1.0% w/w diet) but decreased trabecular density in ovariectomized rats (at 37 or 370 ug/kg/day). In contrast, bisphenol A diglycidyl ether (30 mg/kg/day i.p.) improved bone health in normal male and female rodents and decreased trabecular separation in ovariectomized rodents. Two cross-sectional studies have been performed to examine the relationship between BPA level and bone mineral density in humans but they yielded negligible association. As a conclusion, BPA and its derivatives could influence bone health and a possible gender effect was observed in animal studies. However, its effects in humans await verification from more comprehensive longitudinal studies in the future.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia
| | - Kok-Lun Pang
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Wun Fui Mark-Lee
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
| |
Collapse
|