1
|
Paul S, Donath L, Hoppstädter J, Hecksteden A. Resistance but not endurance training suppresses glucocorticoid-induced leucine zipper (GILZ) expression in human skeletal muscle. Eur J Appl Physiol 2025; 125:1023-1036. [PMID: 39499305 DOI: 10.1007/s00421-024-05644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Within human skeletal muscle, statin treatment leads to elevated levels of the glucocorticoid-induced leucine zipper (GILZ). Further, GILZ mediates the muscle-related side effects of statins. Physical exercise leads to GILZ suppression, in a mechanosensitive manner. Given that statin treatment is rarely tolerated by habitually exercising individuals due to statin-associated muscle symptoms (SAMS), it appears that the opposing regulation of GILZ facilitates this detrimental interaction of two key measures of cardiovascular prevention, specifically for exercise modalities with high muscle strain. Similarly, opposing regulation of atrophy associated genes (atrogenes) may be a further mechanism. If confirmed, these results might have implications for the exercise prescription of statin-users. METHODS A systematic search of the Gene Expression Omnibus (GEO) repository for studies reporting the acute effects of either endurance (END), conventional resistance (RT), or eccentric resistance training (ECC) was conducted. GILZ, as well as the expression of pivotal atrogenes (e.g., muscle atrophy F-box, cathepsin L, etc.) were quantified. RESULTS 15 studies with 204 participants (22 females; 182 males) were included. RT resulted in the highest GILZ suppression, significantly differing from the expressional change after END ( - 0.46 ± 1.11 vs. - 0.07 ± 1.08), but not from ECC ( - 0.46 ± 1.11 vs. - 0.46 ± 0.95). Similar results were seen for various atrogenes. CONCLUSION Our results strengthen the assumption that mechanical loading can be considered a key mediator of exercise-induced changes in GILZ and atrogene expression.
Collapse
Affiliation(s)
- Sebastian Paul
- Department of Training Intervention Research, German Sport University Cologne, 50933, Cologne, Germany.
- Institute of Physiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Lars Donath
- Department of Training Intervention Research, German Sport University Cologne, 50933, Cologne, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Anne Hecksteden
- Institute of Sport Science, Universität of Innsbruck, 6020, Innsbruck, Austria
- Institute of Physiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Voss AC, Chambers TL, Gries KJ, Jemiolo B, Raue U, Minchev K, Begue G, Lee GA, Trappe TA, Trappe SW. Exercise microdosing for skeletal muscle health applications to spaceflight. J Appl Physiol (1985) 2024; 136:1040-1052. [PMID: 38205550 PMCID: PMC11365549 DOI: 10.1152/japplphysiol.00491.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Findings from a recent 70-day bedrest investigation suggested intermittent exercise testing in the control group may have served as a partial countermeasure for skeletal muscle size, function, and fiber-type shifts. The purpose of the current study was to investigate the metabolic and skeletal muscle molecular responses to the testing protocols. Eight males (29 ± 2 yr) completed muscle power (6 × 4 s; peak muscle power: 1,369 ± 86 W) and V̇o2max (13 ± 1 min; 3.2 ± 0.2 L/min) tests on specially designed supine cycle ergometers during two separate trials. Blood catecholamines and lactate were measured pre-, immediately post-, and 4-h postexercise. Muscle homogenate and muscle fiber-type-specific [myosin heavy chain (MHC) I and MHC IIa] mRNA levels of exercise markers (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4) and MHC I, IIa, and IIx were measured from vastus lateralis muscle biopsies obtained pre- and 4-h postexercise. The muscle power test altered (P ≤ 0.05) norepinephrine (+124%), epinephrine (+145%), lactate (+300%), and muscle homogenate mRNA (IκBα, myogenin, MuRF-1, RRAD, Fn14). The V̇o2max test altered (P ≤ 0.05) norepinephrine (+1,394%), epinephrine (+1,412%), lactate (+736%), and muscle homogenate mRNA (myostatin, IκBα, myogenin, MuRF-1, ABRA, RRAD, Fn14, PDK4). In general, both tests influenced MHC IIa muscle fibers more than MHC I with respect to the number of genes that responded and the magnitude of response. Both tests also influenced MHC mRNA expression in a muscle fiber-type-specific manner. These findings provide unique insights into the adaptive response of skeletal muscle to small doses of exercise and could help shape exercise dosing for astronauts and Earth-based individuals.NEW & NOTEWORTHY Declines in skeletal muscle health are a concern for astronauts on long-duration spaceflights. The current findings add to the growing body of exercise countermeasures data, suggesting that small doses of specific exercise can be beneficial for certain aspects of skeletal muscle health. This information can be used in conjunction with other components of existing exercise programs for astronauts and might translate to other areas focused on skeletal muscle health (e.g., sports medicine, rehabilitation, aging).
Collapse
Affiliation(s)
- Adam C Voss
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
3
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
4
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
5
|
Ziyaiyan A, Kordi M, Hofmeister M, Chamari K, Moalla W, Gaeini AA. High-intensity circuit training change serum myostatin but not myogenin in adolescents' soccer players: a quasi-experimental study. BMC Sports Sci Med Rehabil 2023; 15:15. [PMID: 36747295 PMCID: PMC9901002 DOI: 10.1186/s13102-023-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Skeletal muscle contractions due to exercise lead to the secretion of many proteins and proteoglycan peptides called myokines. Myostatin (MSTN) and Myogenin (MyoG) are two of the most important skeletal muscle growth regulatory factors related to myoblast differentiation and muscle hypertrophy. The present study aims at investigating the effects over eight weeks of high-intensity circuit training (HICT) on serum MyoG and MSTN in male soccer players. METHOD The present study is a quasi-experimental study on 21 male soccer players (Experimental group: n = 11, Control group: n = 10) (ages 15.0 ± 3.4 years, body mass 55.7 ± 7.8 kg, height 173.3 ± 8.0 cm, Body mass index 18.4 ± 1.9 kg m-2, maximum oxygen uptake 61.89 ± 3.01 ml kg-1 and the peak height velocity 14.5 ± 0.3 years). Participants were randomly divided into two groups: training group and a control group. The first resting blood samples were obtained in the morning-fasting state, and the second blood samples were obtained after the maximum aerobic test at pre- and post-HICT. RESULTS There were non-significant differences in resting serum values of MyoG (p = 0.309, p > 0.05) but significant differences in resting serum values of MSTN between the training and control groups after eight weeks of HICT (p = 0.003, p < 0.05). No significant differences were observed between groups in the acute response of serum values of MyoG (p = 0.413, p < 0.05) and MSTN (p = 0.465, p < 0.05) to the maximum aerobic test after eight weeks of HICT. CONCLUSION These results suggest that eight weeks of HICT can decrease the resting serum values of MSTN but not change the resting serum values of MyoG in male adolescent soccer players. Also, eight weeks of HICT does not affect the acute response of MSTN and MyoG after a maximum aerobic test.
Collapse
Affiliation(s)
- Amirhosein Ziyaiyan
- Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran.
| | - Mohammadreza Kordi
- grid.46072.370000 0004 0612 7950Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran
| | - Martin Hofmeister
- Department Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| | - Karim Chamari
- grid.415515.10000 0004 0368 4372Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | - Wassim Moalla
- grid.412124.00000 0001 2323 5644Laboratory EM2S LR19JS01: Education, Motricity, Sport and Health, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Abbas Ali Gaeini
- grid.46072.370000 0004 0612 7950Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Marafon BB, Pinto AP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, da Silva ASR. Muscle endoplasmic reticulum stress in exercise. Acta Physiol (Oxf) 2022; 235:e13799. [PMID: 35152547 DOI: 10.1111/apha.13799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle responsible for the post-translational folding and modification of proteins. Under stress conditions, such as physical exercise, there is accumulation of misfolded proteins. The increased load of proteins in the ER results in ER stress, which activates the unfolded protein response (UPR). UPR is comprised of three parallel pathways, responsible for ensuring the quality of secreted proteins. Scientific studies show that resistance or endurance acute physical exercise can induce ER stress and activate the UPR pathways. On the other hand, regular moderate-intensity exercise can attenuate the responses of genes and proteins related to ER stress. However, these positive adaptations do not occur when exercise intensity and volume increase without adequate rest periods, which is observed in overtraining. The current review discusses the frontier-of-knowledge findings on the effects of different acute and chronic physical exercise protocols on skeletal muscle ER stress and its metabolic consequences.
Collapse
Affiliation(s)
- Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto University of São Paulo (USP) São Paulo Brazil
| | - Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP) São Paulo Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto University of São Paulo (USP) São Paulo Brazil
- Laboratory of Molecular Biology of Exercise (LaBMEx) School of Applied Sciences University of Campinas (UNICAMP) São Paulo Brazil
| |
Collapse
|
7
|
Enhancement of anaerobic glycolysis - a role of PGC-1α4 in resistance exercise. Nat Commun 2022; 13:2324. [PMID: 35484130 PMCID: PMC9050893 DOI: 10.1038/s41467-022-30056-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance exercise training (RET) is an effective countermeasure to sarcopenia, related frailty and metabolic disorders. Here, we show that an RET-induced increase in PGC-1α4 (an isoform of the transcriptional co-activator PGC-1α) expression not only promotes muscle hypertrophy but also enhances glycolysis, providing a rapid supply of ATP for muscle contractions. In human skeletal muscle, PGC-1α4 binds to the nuclear receptor PPARβ following RET, resulting in downstream effects on the expressions of key glycolytic genes. In myotubes, we show that PGC-1α4 overexpression increases anaerobic glycolysis in a PPARβ-dependent manner and promotes muscle glucose uptake and fat oxidation. In contrast, we found that an acute resistance exercise bout activates glycolysis in an AMPK-dependent manner. These results provide a mechanistic link between RET and improved glucose metabolism, offering an important therapeutic target to counteract aging and inactivity-induced metabolic diseases benefitting those who cannot exercise due to many reasons.
Collapse
|
8
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
9
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
10
|
The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle. Eur J Appl Physiol 2021; 121:2913-2924. [PMID: 34196787 PMCID: PMC10150453 DOI: 10.1007/s00421-021-04758-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/22/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE Aerobic (AE) and resistance (RE) exercise elicit unique adaptations in skeletal muscle. The purpose here was to compare the post-exercise response of mTOR signaling and select autophagy markers in skeletal muscle to acute AE and RE. METHODS In a randomized, cross-over design, six untrained men (27 ± 3 years) completed acute AE (40 min cycling, 70% HRmax) and RE (8 sets, 10 repetitions, 65% 1RM). Muscle biopsies were taken at baseline, and at 1 h and 4 h following each exercise. Western blot analyses were performed to examine total and phosphorylated protein levels. Upstream regulator analyses of skeletal muscle transcriptomics were performed to discern the predicted activation states of mTOR and FOXO3. RESULTS Compared to AE, acute RE resulted in greater phosphorylation (P < 0.05) of mTORSer2448 at 4 h, S6K1Thr389 at 1 h, and 4E- BP1Thr37/46 during the post-exercise period. However, both AE and RE increased mTORSer2448 and S6K1Thr389 phosphorylation at 4 h (P < 0.05). Upstream regulator analyses revealed the activation state of mTOR was increased for both AE (z score, 2.617) and RE (z score, 2.789). No changes in LC3BI protein were observed following AE or RE (P > 0.05), however, LC3BII protein was decreased after both AE and RE at 1 h and 4 h (P < 0.05). p62 protein content was also decreased at 4 h following AE and RE (P < 0.05). CONCLUSION Both acute AE and RE stimulate mTOR signaling and similarly impact select markers of autophagy. These findings indicate the early adaptive response of untrained human skeletal muscle to divergent exercise modes is not likely mediated through large differences in mTOR signaling or autophagy.
Collapse
|
11
|
Carnovale F, Xiao J, Shi B, Kaart T, Arney D, Phillips CJC. The Effects of Vehicle Type, Transport Duration and Pre-Transport Feeding on the Welfare of Sheep Transported in Low Temperatures. Animals (Basel) 2021; 11:ani11061659. [PMID: 34199657 PMCID: PMC8227339 DOI: 10.3390/ani11061659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Low temperatures can provide a risk to the welfare of sheep during transport because of increased ventilation chilling the sheep, and we examined the importance of three factors-covering the vehicle, duration of transport, and feeding prior to transport-on the welfare of sixty transported 4-month-old Dorper × Mongolian female sheep in a cold climate. Sheep in a covered vehicle had greater increases in head and ear temperatures than those in an open vehicle. Sheep transported for 2 h increased their leg temperatures, whereas those transported for 1 h had reduced leg temperatures. Increases in non-esterified fatty acids (NEFA) and lactate dehydrogenase (LDH) in the blood samples during the long transport suggested that sheep had more muscular and metabolic activity, compromising their well-being. Feeding prior to transport did not affect body temperatures, but those not fed prior to transport had reduced alanine transferase, HSP and cortisol in their blood, whereas those that were fed had reduced NEFAs, LDH and creatine kinase. Prior feeding had no effect on the sheep temperature indices over a two-hour transport period. Thus, the sheep most at risk of the adverse effects of cold temperatures were those transported in open vehicles, those transported for a longer time, and those not fed before transport.
Collapse
Affiliation(s)
- Francesca Carnovale
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (B.S.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; (T.K.); (D.A.)
| | - Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (B.S.)
- Correspondence:
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia, Hohhot 010018, China; (F.C.); (B.S.)
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; (T.K.); (D.A.)
| | - David Arney
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; (T.K.); (D.A.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, PKent St., Bentley, WA 6102, Australia;
| |
Collapse
|
12
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
13
|
Hall ECR, Murgatroyd C, Stebbings GK, Cunniffe B, Harle L, Salter M, Ramadass A, Westra JW, Hunter E, Akoulitchev A, Williams AG. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures. Genes (Basel) 2020; 11:E905. [PMID: 32784689 PMCID: PMC7464522 DOI: 10.3390/genes11080905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
The integration of genetic and environmental factors that regulate the gene expression patterns associated with exercise adaptation is mediated by epigenetic mechanisms. The organisation of the human genome within three-dimensional space, known as chromosome conformation, has recently been shown as a dynamic epigenetic regulator of gene expression, facilitating the interaction of distal genomic regions due to tight and regulated packaging of chromosomes in the cell nucleus. Technological advances in the study of chromosome conformation mean a new class of biomarker-the chromosome conformation signature (CCS)-can identify chromosomal interactions across several genomic loci as a collective marker of an epigenomic state. Investigative use of CCSs in biological and medical research shows promise in identifying the likelihood that a disease state is present or absent, as well as an ability to prospectively stratify individuals according to their likely response to medical intervention. The association of CCSs with gene expression patterns suggests that there are likely to be CCSs that respond, or regulate the response, to exercise and related stimuli. The present review provides a contextual background to CCS research and a theoretical framework discussing the potential uses of this novel epigenomic biomarker within sport and exercise science and medicine.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | | | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | - Brian Cunniffe
- English Institute of Sport, Nottingham NG12 2LU, UK;
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| | - Lee Harle
- Holos Life Sciences, Oxford OX1 3HA, UK;
| | - Matthew Salter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Aroul Ramadass
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Jurjen W. Westra
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Ewan Hunter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | | | - Alun G. Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| |
Collapse
|
14
|
Lee MJC, Ballantyne JK, Chagolla J, Hopkins WG, Fyfe JJ, Phillips SM, Bishop DJ, Bartlett JD. Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS One 2020; 15:e0233134. [PMID: 32407361 PMCID: PMC7224562 DOI: 10.1371/journal.pone.0233134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background The importance of concurrent exercise order for improving endurance and resistance adaptations remains unclear, particularly when sessions are performed a few hours apart. We investigated the effects of concurrent training (in alternate orders, separated by ~3 hours) on endurance and resistance training adaptations, compared to resistance-only training. Materials and methods Twenty-nine healthy, moderately-active men (mean ± SD; age 24.5 ± 4.7 y; body mass 74.9 ± 10.8 kg; height 179.7 ± 6.5 cm) performed either resistance-only training (RT, n = 9), or same-day concurrent training whereby high-intensity interval training was performed either 3 hours before (HIIT+RT, n = 10) or after resistance training (RT+HIIT, n = 10), for 3 d.wk-1 over 9 weeks. Training-induced changes in leg press 1-repetition maximal (1-RM) strength, countermovement jump (CMJ) performance, body composition, peak oxygen uptake ( V˙O2peak), aerobic power ( W˙peak), and lactate threshold ( W˙LT) were assessed before, and after both 5 and 9 weeks of training. Results After 9 weeks, all training groups increased leg press 1-RM (~24–28%) and total lean mass (~3-4%), with no clear differences between groups. Both concurrent groups elicited similar small-to-moderate improvements in all markers of aerobic fitness ( V˙O2peak ~8–9%; W˙LT ~16-20%; W˙peak ~14-15%). RT improved CMJ displacement (mean ± SD, 5.3 ± 6.3%), velocity (2.2 ± 2.7%), force (absolute: 10.1 ± 10.1%), and power (absolute: 9.8 ± 7.6%; relative: 6.0 ± 6.6%). HIIT+RT elicited comparable improvements in CMJ velocity only (2.2 ± 2.7%). Compared to RT, RT+HIIT attenuated CMJ displacement (mean difference ± 90%CI, -5.1 ± 4.3%), force (absolute: -8.2 ± 7.1%) and power (absolute: -6.0 ± 4.7%). Only RT+HIIT reduced absolute fat mass (mean ± SD, -11.0 ± 11.7%). Conclusions In moderately-active males, concurrent training, regardless of the exercise order, presents a viable strategy to improve lower-body maximal strength and total lean mass comparably to resistance-only training, whilst also improving indices of aerobic fitness. However, improvements in CMJ displacement, force, and power were attenuated when RT was performed before HIIT, and as such, exercise order may be an important consideration when designing training programs in which the goal is to improve lower-body power.
Collapse
Affiliation(s)
- Matthew J. -C. Lee
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- * E-mail:
| | | | - Javier Chagolla
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - William G. Hopkins
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jackson J. Fyfe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Australia
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- School of Medicine & Health Sciences, Edith Cowan University, Joonalup, Australia
| | | |
Collapse
|
15
|
Krekeler BN, Weycker JM, Connor NP. Effects of Tongue Exercise Frequency on Tongue Muscle Biology and Swallowing Physiology in a Rat Model. Dysphagia 2020; 35:918-934. [PMID: 32130514 DOI: 10.1007/s00455-020-10105-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/25/2020] [Indexed: 11/28/2022]
Abstract
Age-related changes in muscle composition and function are often treated using exercise, including muscles of the tongue to treat swallowing impairments (dysphagia). Although tongue exercise is commonly prescribed, optimal tongue exercise doses have not been determined. The purpose of this study was to evaluate effects of varying tongue exercise frequency on tongue force, genioglossus muscle fiber size, composition and metabolism, and swallowing in a rat model. We randomized 41 old and 40 young adult Fischer 344/Brown Norway rats into one of four tongue exercise groups: 5 days/week; 3 days/week; 1 day/week; or sham. Tongue force was higher following all exercise conditions (vs sham); the 5 day/week group had the greatest change in tongue force (p < 0.001). There were no exercise effects on genioglossus (GG) fiber size or MyHC composition (p > 0.05). Significant main effects for age showed a greater proportion of Type I fibers in (p < 0.0001) and increased fiber size of IIa fibers (p = 0.026) in old. There were no significant effects of citrate synthase activity or PGC-1α expression. Significant differences were found in bolus speed and area (size), but findings were potentially influenced by variability. Our findings suggest that tongue force is influenced by exercise frequency; however, these changes were not reflected in characteristics of the GG muscle assayed in this study. Informed by findings of this study, future work in tongue dose optimization will be required to provide better scientific premise for clinical treatments in humans.
Collapse
Affiliation(s)
- Brittany N Krekeler
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Goodnight Hall, 1300 University Ave, Madison, WI, 53706, USA. .,Department of Surgery-Otolaryngology, Clinical Science Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792-7375, USA. .,Department of Communication Sciences and Disorders, Northwestern University, Swallowing Cross-Systems Collaborative, 2240 Campus Drive, Evanston, IL, 60208, USA.
| | - Jacqueline M Weycker
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Goodnight Hall, 1300 University Ave, Madison, WI, 53706, USA.,Department of Surgery-Otolaryngology, Clinical Science Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792-7375, USA
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Goodnight Hall, 1300 University Ave, Madison, WI, 53706, USA.,Department of Surgery-Otolaryngology, Clinical Science Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792-7375, USA
| |
Collapse
|
16
|
Hwang PS, Willoughby DS. Mechanisms Behind Blood Flow-Restricted Training and its Effect Toward Muscle Growth. J Strength Cond Res 2019; 33 Suppl 1:S167-S179. [PMID: 30011262 DOI: 10.1519/jsc.0000000000002384] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hwang, P and Willoughby, DS. Mechanisms behind blood flow-restricted training and its effect toward muscle growth. J Strength Cond Res 33(7S): S167-S179, 2019-It is widely established throughout the literature that skeletal muscle can induce hypertrophic adaptations after progressive overload of moderate-to-high-intensity resistance training. However, there has recently been a growing body of research that shows that the combination of blood flow-restricted (BFR) training with low-intensity resistance exercise can induce similar gains in muscular strength and hypertrophic adaptations. The implementation of external pressure cuffs over the most proximal position of the limb extremities with the occlusion of venous outflow of blood distal to the occlusion site defines the BFR training protocol. There are various mechanisms through which BFR training may cause the stimulations for skeletal muscle hypertrophy and increases in strength. These may include increases in hormonal concentrations, increases within the components of the intracellular signaling pathways for muscle protein synthesis such as the mTOR pathway, increases within biomarkers denoting satellite cell activity and apparent patterns in fiber type recruitment. There have also been scientific findings demonstrating hypertrophic effects within both BFR limbs and non-BFR muscles during BFR training programs. The purpose behind this critical review will be to provide a comprehensive discussion on relevant literature that can help elucidate the potential underlying mechanisms leading to hypertrophic adaptations after BFR training programs. This review will also explicate the various findings within the literature that focalizes on both BFR limb and non-BFR muscle hypertrophy after bouts of BFR training. Furthermore, this critical review will also address the various needs for future research in the many components underlying the novel modality of BFR training.
Collapse
Affiliation(s)
- Paul S Hwang
- Department of Health, Human Performance, and Recreation, Exercise and Biochemical Nutrition Laboratory, Baylor University, Waco, Texas
| | | |
Collapse
|
17
|
McKendry J, Shad BJ, Smeuninx B, Oikawa SY, Wallis G, Greig C, Phillips SM, Breen L. Comparable Rates of Integrated Myofibrillar Protein Synthesis Between Endurance-Trained Master Athletes and Untrained Older Individuals. Front Physiol 2019; 10:1084. [PMID: 31543824 PMCID: PMC6728413 DOI: 10.3389/fphys.2019.01084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background An impaired muscle anabolic response to exercise and protein nutrition is thought to underpin age-related muscle loss, which may be exacerbated by aspects of biological aging that may not be present in older individuals who have undertaken long-term high-level exercise training, or master athletes (MA). The aim of this study was to compare rested-state and exercise-induced rates of integrated myofibrillar protein synthesis (iMyoPS) and intracellular signaling in endurance trained MA and healthy age-matched untrained individuals (Older Controls). Methods In a parallel study design, iMyoPS rates were determined over 48 h in the rested-state and following a bout of unaccustomed resistance exercise (RE) in OC (n = 8 males; 73.5 ± 3.3 years) and endurance-trained MA (n = 7 males; 68.9 ± 5.7 years). Intramuscular anabolic signaling was also determined. During the iMyoPS measurement period, physical activity was monitored via accelerometry and dietary intake was controlled. Results Anthropometrics, habitual activity, and dietary intake were similar between groups. There was no difference in rested-state rates of iMyoPS between OC (1.47 ± 0.06%⋅day–1) and MA (1.46 ± 0.08%⋅day–1). RE significantly increased iMyoPS above rest in both OC (1.60 ± 0.08%⋅day–1, P < 0.01) and MA (1.61 ± 0.08%⋅day–1, P < 0.01), with no difference between groups. AktThr308 phosphorylation increased at 1 h post-RE in OC (P < 0.05), but not MA. No other between-group differences in intramuscular signaling were apparent at any time-point. Conclusion While our sample size is limited, these data suggest that rested-state and RE-induced iMyoPS are indistinguishable between MA and OC. Importantly, the OC retain a capacity for RE-induced stimulation of skeletal muscle remodeling.
Collapse
Affiliation(s)
- James McKendry
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Gareth Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carolyn Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, Birmingham, United Kingdom.,MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, Birmingham, United Kingdom.,MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Ross CI, Shute RJ, Ruby BC, Slivka DR. Skeletal Muscle mRNA Response to Hypobaric and Normobaric Hypoxia After Normoxic Endurance Exercise. High Alt Med Biol 2019; 20:141-149. [DOI: 10.1089/ham.2018.0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Caleb I. Ross
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| | - Robert J. Shute
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| | - Brent C. Ruby
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, Montana
| | - Dustin R. Slivka
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
19
|
Çelik C, Bolu A, Öznur T, Aydın MS, Tokgöz Y, Uzun Ö. Changes in Pre- and Post-Electroconvulsive Therapy Serum Myostatin Levels in Patients with Treatment Resistant Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:74-79. [PMID: 30690942 PMCID: PMC6361038 DOI: 10.9758/cpn.2019.17.1.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Cemil Çelik
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Abdullah Bolu
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Taner Öznur
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mehmet Sinan Aydın
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Yusuf Tokgöz
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Özcan Uzun
- Department of Psychiatry, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
20
|
Crowley E, Harrison AJ, Lyons M. The Impact of Resistance Training on Swimming Performance: A Systematic Review. Sports Med 2018; 47:2285-2307. [PMID: 28497283 DOI: 10.1007/s40279-017-0730-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The majority of propulsive forces in swimming are produced from the upper body, with strong correlations between upper body strength and sprint performance. There are significant gaps in the literature relating to the impact of resistance training on swimming performance, specifically the transfer to swimming performance. OBJECTIVE The aims of this systematic literature review are to (1) explore the transfer of resistance-training modalities to swimming performance, and (2) examine the effects of resistance training on technical aspects of swimming. METHODS Four online databases were searched with the following inclusion criteria: (1) journal articles with outcome measures related to swimming performance, and (2) competitive swimmers participating in a structured resistance-training programme. Exclusion criteria were (1) participants with a mean age <16 years; (2) untrained, novice, masters and paraplegic swimmers; (3) triathletes and waterpolo players; (4) swimmers with injuries or illness; and (5) studies of starts and turns specifically. Data were extracted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Physiotherapy Evidence Database (PEDro) scale was applied. RESULTS For optimal transfer, specific, low-volume, high-velocity/force resistance-training programmes are optimal. Stroke length is best achieved through resistance training with low repetitions at a high velocity/force. Resisted swims are the most appropriate training modality for improving stroke rate. CONCLUSION Future research is needed with respect to the effects of long-term resistance-training interventions on both technical parameters of swimming and overall swimming performance. The results of such work will be highly informative for the scientific community, coaches and athletes.
Collapse
Affiliation(s)
- Emmet Crowley
- Biomechanics Research Unit, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.
| | - Andrew J Harrison
- Biomechanics Research Unit, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - Mark Lyons
- Biomechanics Research Unit, Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
22
|
Dickinson JM, D'Lugos AC, Naymik MA, Siniard AL, Wolfe AJ, Curtis DR, Huentelman MJ, Carroll CC. Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol (1985) 2018. [PMID: 29543133 DOI: 10.1152/japplphysiol.00014.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aerobic (AE) and resistance exercise (RE) elicit unique adaptations in skeletal muscle that have distinct implications for health and performance. The purpose of this study was to identify the unique transcriptome response of skeletal muscle to acute AE and RE. In a counterbalanced, crossover design, six healthy, recreationally active young men (27 ± 3 yr) completed acute AE (40 min of cycling, ∼70% maximal HR) and RE [8 sets, 10 reps, ∼65% 1-repetition maximum (1RM)], separated by ∼1 wk. Muscle biopsies (vastus lateralis) were obtained before and at 1 and 4 h postexercise. Whole transcriptome RNA sequencing (HiSeq2500; Illumina) was performed on cDNA synthesized from skeletal muscle RNA. Sequencing data were analyzed using HTSeq, and differential gene expression was identified using DESeq2 [adjusted P value (FDR) <0.05, >1.5-fold change from preexercise]. RE resulted in a greater number of differentially expressed genes at 1 (67 vs. 48) and 4 h (523 vs. 221) compared with AE. We identified 348 genes that were differentially expressed only following RE, whereas 48 genes were differentially expressed only following AE. Gene clustering indicated that AE targeted functions related to zinc interaction, angiogenesis, and ubiquitination, whereas RE targeted functions related to transcription regulation, cytokine activity, cell adhesion, kinase activity, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. ESRRG and TNFSRF12A were identified as potential targets related to the specific response of skeletal muscle to AE and RE, respectively. These data describe the early postexercise transcriptome response of skeletal muscle to acute AE and RE and further highlight that different forms of exercise stimulate unique molecular activity in skeletal muscle. NEW & NOTEWORTHY Whole transcriptome RNA sequencing was used to determine the early postexercise transcriptome response of skeletal muscle to acute aerobic (AE) and resistance exercise (RE) in untrained individuals. Although a number of shared genes were stimulated following both AE and RE, several genes were uniquely responsive to each exercise mode. These findings support the need for future research focused to better identify the role of exercise mode as it relates to targeting specific cellular skeletal muscle abnormalities.
Collapse
Affiliation(s)
- Jared M Dickinson
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University , Phoenix, Arizona
| | - Andrew C D'Lugos
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Exercise Science and Health Promotion, Arizona State University , Phoenix, Arizona
| | - Marcus A Naymik
- Translational Genomics Research Institute , Phoenix, Arizona
| | | | - Amanda J Wolfe
- Translational Genomics Research Institute , Phoenix, Arizona
| | | | | | - Chad C Carroll
- Midwestern University , Glendale, Arizona.,Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| |
Collapse
|
23
|
Metabolic and molecular changes associated with the increased skeletal muscle insulin action 24-48 h after exercise in young and old humans. Biochem Soc Trans 2018; 46:111-118. [PMID: 29330356 DOI: 10.1042/bst20170198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022]
Abstract
The molecular and metabolic mechanisms underlying the increase in insulin sensitivity (i.e. increased insulin-stimulated skeletal muscle glucose uptake, phosphorylation and storage as glycogen) observed from 12 to 48 h following a single bout of exercise in humans remain unresolved. Moreover, whether these mechanisms differ with age is unclear. It is well established that a single bout of exercise increases the translocation of the glucose transporter, GLUT4, to the plasma membrane. Previous research using unilateral limb muscle contraction models in combination with hyperinsulinaemia has demonstrated that the increase in insulin sensitivity and glycogen synthesis 24 h after exercise is also associated with an increase in hexokinase II (HKII) mRNA and protein content, suggesting an increase in the capacity of the muscle to phosphorylate glucose and divert it towards glycogen synthesis. Interestingly, this response is altered in older individuals for up to 48 h post exercise and is associated with molecular changes in skeletal muscle tissue that are indicative of reduced lipid oxidation, increased lipogenesis, increased inflammation and a relative inflexibility of changes in intramyocellular lipid (IMCL) content. Reduced insulin sensitivity (insulin resistance) is generally related to IMCL content, particularly in the subsarcolemmal (SSL) region, and both are associated with increasing age. Recent research has demonstrated that ageing per se appears to cause an exacerbated lipolytic response to exercise that may result in SSL IMCL accumulation. Further research is required to determine if increased IMCL content affects HKII expression in the days after exercise in older individuals, and the effect of this on skeletal muscle insulin action.
Collapse
|
24
|
Pickering C, Kiely J. Understanding Personalized Training Responses: Can Genetic Assessment Help? ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1875399x01710010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Traditional exercise prescription is based on the assumption that exercise adaptation is predictable and standardised across individuals. However, evidence has emerged in the past two decades demonstrating that large inter-individual variation exists regarding the magnitude and direction of adaption following exercise.Objective:The aim of this paper was to discuss the key factors influencing this personalized response to exercise in a narrative review format.Findings:Genetic variation contributes significantly to the personalized training response, with specific polymorphisms associated with differences in exercise adaptation. These polymorphisms exist in a number of pathways controlling exercise adaptation. Environmental factors such as nutrition, psycho-emotional response, individual history and training programme design also modify the inter-individual adaptation following training. Within the emerging field of epigenetics, DNA methylation, histone modifications and non-coding RNA allow environmental and lifestyle factors to impact genetic expression. These epigenetic mechanisms are themselves modified by genetic and non-genetic factors, illustrating the complex interplay between variables in determining the adaptive response. Given that genetic factors are such a fundamental modulator of the inter-individual response to exercise, genetic testing may provide a useful and affordable addition to those looking to maximise exercise adaption, including elite athletes. However, there are ethical issues regarding the use of genetic tests, and further work is needed to provide evidence based guidelines for their use.Conclusion:There is considerable inter-individual variation in the adaptive response to exercise. Genetic assessments may provide an additional layer of information allowing personalization of training programmes to an individual’s unique biology.
Collapse
|
25
|
Effect of eccentric action velocity on expression of genes related to myostatin signaling pathway in human skeletal muscle. Biol Sport 2017; 35:111-119. [PMID: 30455539 PMCID: PMC6234307 DOI: 10.5114/biolsport.2018.71600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/12/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the effects of an acute bout of eccentric actions, performed at fast velocity (210º.s-1) and at slow velocity (20º.s-1), on the gene expression of regulatory components of the myostatin (MSTN) signalling pathway. Participants performed an acute bout of eccentric actions at either a slow or a fast velocity. Muscle biopsy samples were taken before, immediately after, and 2 h after the exercise bout. The gene expression of the components of the MSTN pathway was assessed by real-time PCR. No change was observed in MSTN, ACTRIIB, GASP-1 or FOXO-3a gene expression after either slow or fast eccentric actions (p > 0.05). However, the MSTN inhibitors follistatin (FST), FST-like-3 (FSTL3) and SMAD-7 were significantly increased 2 h after both eccentric actions (p < 0.05). No significant difference between bouts was found before, immediately after, or 2 h after the eccentric actions (slow and fast velocities, p > 0.05). The current findings indicate that a bout of eccentric actions activates the expression of MSTN inhibitors. However, no difference was observed in MSTN inhibitors’ gene expression when comparing slow and fast eccentric actions. It is possible that the greater time under tension induced by slow eccentric (SE) actions might compensate the effect of the greater velocity of fast eccentric (FE) actions. Additional studies are required to address the effect of eccentric action (EA) velocities on the pathways related to muscle hypertrophy.
Collapse
|
26
|
de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE. Role of metabolic stress for enhancing muscle adaptations: Practical applications. World J Methodol 2017; 7:46-54. [PMID: 28706859 PMCID: PMC5489423 DOI: 10.5662/wjm.v7.i2.46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations.
Collapse
|
27
|
Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect. Sports Med 2017; 46:1029-39. [PMID: 26932769 DOI: 10.1007/s40279-016-0496-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.
Collapse
|
28
|
Hooper DR, Kraemer WJ, Focht BC, Volek JS, DuPont WH, Caldwell LK, Maresh CM. Endocrinological Roles for Testosterone in Resistance Exercise Responses and Adaptations. Sports Med 2017; 47:1709-1720. [DOI: 10.1007/s40279-017-0698-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Abreu P, Leal-Cardoso JH, Ceccatto VM. ADAPTAÇÃO DO MÚSCULO ESQUELÉTICO AO EXERCÍCIO FÍSICO: CONSIDERAÇÕES MOLECULARES E ENERGÉTICAS. REV BRAS MED ESPORTE 2017. [DOI: 10.1590/1517-869220172301167371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Os benefícios para a saúde e as adaptações fisiológicas ao exercício regular são amplamente conhecidos e, com o advento das ciências ômicas e moleculares, revelou-se uma complexa rede de vias de sinalização e moléculas reguladoras que coordenam a resposta adaptativa do músculo esquelético ao exercício. As mudanças orgânicas transientes, porém, são cumulativas no pós-exercício. Elas incluem, de forma principal, a transcrição de genes relacionados aos fatores regulatórios da miogênese, ao metabolismo de carboidratos, à mobilização de gorduras, ao transporte e oxidação de substratos, ao metabolismo mitocondrial através da fosforilação oxidativa e, por fim, à regulação transcricional de genes envolvidos na biogênese mitocondrial. Tendo em vista o grande impacto científico, resumiram-se neste trabalho, além de algumas das principais respostas moleculares sofridas pelo músculo esquelético com o exercício físico, fatores que coordenam a plasticidade muscular para o ganho de desempenho. Foram citadas dezenas de biomarcadores ligados a alguns aspectos moleculares das adaptações do músculo esquelético ao exercício físico, algumas principais vias sinalizadoras e o papel mitocondrial, revelando alguns novos paradigmas para o entendimento desta área científica.
Collapse
|
30
|
Mendham AE, Duffield R, Coutts AJ, Marino FE, Boyko A, McAinch AJ, Bishop DJ. Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men. J Appl Physiol (1985) 2016; 121:1326-1334. [DOI: 10.1152/japplphysiol.00289.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/14/2022] Open
Abstract
This study assessed the mitochondrial related signaling responses to a single bout of noncontact, modified football (touch rugby), played as small-sided games (SSG), or cycling (CYC) exercise in sedentary, obese, middle-aged men. In a randomized, crossover design, nine middle-aged, sedentary, obese men completed two, 40-min exercise conditions (CYC and SSG) separated by a 21-day recovery period. Heart rate (HR) and ratings of perceived exertion (RPE) were collected during each bout. Needle biopsies from the vastus lateralis muscle were collected at rest and 30 and 240 min postexercise for analysis of protein content and phosphorylation (PGC-1α, SIRT1, p53, p53Ser15, AMPK, AMPKThr172, CAMKII, CAMKIIThr286, p38MAPK, and p38MAPKThr180/Tyr182) and mRNA expression (PGC-1α, p53, NRF1, NRF2, Tfam, and cytochrome c). A main effect of time effect for both conditions was evident for HR, RPE, and blood lactate ( P < 0.05), with no condition by time interaction ( P > 0.05). Both conditions increased PGC1-α protein and mRNA expression at 240 min ( P < 0.05). AMPKThr172 increased 30 min post CYC ( P < 0.05), with no change in SSG ( P > 0.05). CYC increased p53 protein content at 240 min to a greater extent than SSG ( P < 0.05). mRNA expression of NRF2 decreased in both conditions ( P < 0.05). No condition by time interactions were evident for mRNA expression of Tfam, NRF1, cytochrome c, and p53. The similar PGC-1α response between intensity-matched conditions suggests both conditions are of similar benefit for stimulating mitochondrial biogenesis. Differences between conditions regarding fluctuation in exercise intensity and type of muscle contraction may explain the increase of p53 and AMPK within CYC and not SSG (noncontact, modified football).
Collapse
Affiliation(s)
- Amy E. Mendham
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Rob Duffield
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney (UTS), Moore Park, New South Wales, Australia
| | - Aaron J. Coutts
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney (UTS), Moore Park, New South Wales, Australia
| | - Frank E. Marino
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Andriy Boyko
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney (UTS), Moore Park, New South Wales, Australia
| | - Andrew J. McAinch
- Centre for Chronic Diseases, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - David John Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
31
|
Murach KA, Walton RG, Fry CS, Michaelis SL, Groshong JS, Finlin BS, Kern PA, Peterson CA. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise. Physiol Rep 2016; 4:e12973. [PMID: 27650251 PMCID: PMC5037921 DOI: 10.14814/phy2.12973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age.
Collapse
Affiliation(s)
- Kevin A Murach
- Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - R Grace Walton
- Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Sami L Michaelis
- Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jason S Groshong
- Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Brian S Finlin
- Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Philip A Kern
- Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
32
|
Kazemi F. The correlation of resistance exercise-induced myostatin with insulin resistance and plasma cytokines in healthy young men. J Endocrinol Invest 2016; 39:383-8. [PMID: 26280319 DOI: 10.1007/s40618-015-0373-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE This study was designed to examine the correlation of resistance exercise (RE)-induced myostatin (MSTN) with insulin resistance and plasma cytokines in healthy young men. METHODS Twenty-four healthy men were randomly divided into RE (n = 12) and control (n = 12) group. After a session of familiarization, one repetition maximum (1-RM) was calculated. Circuit RE program involved 3 sets of 15 repetitions at 55 % of 1-RM. Blood samples were collected before and 24 h after the exercise. Paired t test, independent t test, and Pearson's correlation were used for analyzing data. RESULTS A significant decrease in plasma level of MSTN, glucose, insulin, interleukin-6 (IL-6), and homeostasis model assessment of insulin resistance (HOMA-IR) and a significant increase in plasma interleukin-10 (IL-10) were found in RE group 24 h post-exercise versus pre-exercise (p < 0.05). Furthermore, except plasma IL-10, a significant decrease in metabolic variables was found in RE group versus control group (p < 0.05). A significantly positive correlation of plasma MSTN with HOMA-IR and plasma IL-6 and a significantly negative correlation of plasma MSTN with plasma IL-10 were found in RE group versus control group (p < 0.05). CONCLUSIONS It seems that a circuit RE bout by reducing HOMA-IR and changing plasma cytokines (decreased IL-6 and increased IL-10) can decrease plasma level of MSTN in healthy young men. In other word, the beneficial effect of acute RE may be reflected by changes in MSTN in healthy young individuals.
Collapse
Affiliation(s)
- F Kazemi
- School of Physical Education and Sport Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
33
|
Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg HC, Blomstrand E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One 2016; 11:e0149082. [PMID: 26885978 PMCID: PMC4757413 DOI: 10.1371/journal.pone.0149082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
Collapse
Affiliation(s)
- Zuzanna Kazior
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eva Blomstrand
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
34
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hyzewicz J, Tanihata J, Kuraoka M, Ito N, Miyagoe-Suzuki Y, Takeda S. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction. Free Radic Biol Med 2015; 82:122-36. [PMID: 25660994 DOI: 10.1016/j.freeradbiomed.2015.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
36
|
Affiliation(s)
- Milène Catoire
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
37
|
Lambert BS, Shimkus KL, Fluckey JD, Riechman SE, Greene NP, Cardin JM, Crouse SF. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise. Am J Physiol Endocrinol Metab 2015; 308:E192-200. [PMID: 25425002 DOI: 10.1152/ajpendo.00689.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM.
Collapse
Affiliation(s)
- Brad S Lambert
- Applied Exercise Science Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas;
| | - Kevin L Shimkus
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| | - Steven E Riechman
- Human Countermeasures Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas; and
| | - Nicholas P Greene
- Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Jessica M Cardin
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| | - Stephen F Crouse
- Applied Exercise Science Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| |
Collapse
|
38
|
Popov DV, Lysenko EA, Bachinin AV, Miller TF, Kurochkina NS, Kravchenko IV, Furalyov VA, Vinogradova OL. Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve 2015; 51:434-42. [PMID: 24916884 DOI: 10.1002/mus.24314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We investigated the effect of resistance exercise intensity and exercise-induced metabolic stress on the activation of anabolic signaling and expression of myogenic genes in skeletal muscle. METHODS Ten strength-trained athletes performed high-intensity [HI, 74% of 1-repetition maximum (RM)], middle-intensity (MI, 54% 1RM), or middle-intensity (54% 1RM) no-relaxation exercise (MIR). Kinase phosphorylation level and myogenic gene expression in muscle samples were evaluated before, 45 min, 5 h, and 20 h after exercise. RESULTS The lactate concentration in MI was approximately 2-fold lower than in the 2 other sessions, and was highest in MIR. The phosphorylation level of extracellular kinase 1/2Thr202/Tyr204 after exercise was related to metabolic stress. Metabolic stress induced a decrease in myostatin mRNA expression, whereas mechano-growth factor mRNA level depended on exercise intensity. CONCLUSIONS This study demonstrates that both intensity and exercise-induced metabolic stress can be manipulated to affect muscle anabolic signaling.
Collapse
Affiliation(s)
- Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, 76A Khoroshevskoe Shosse, Moscow, 123007, Russia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kainulainen H, Papaioannou KG, Silvennoinen M, Autio R, Saarela J, Oliveira BM, Nyqvist M, Pasternack A, 't Hoen PAC, Kujala UM, Ritvos O, Hulmi JJ. Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol 2015; 399:131-42. [PMID: 25304272 DOI: 10.1016/j.mce.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is characterized by muscle wasting and decreased aerobic metabolism. Exercise and blocking of myostatin/activin signaling may independently or combined counteract muscle wasting and dystrophies. The effects of myostatin/activin blocking using soluble activin receptor-Fc (sActRIIB-Fc) administration and wheel running were tested alone or in combination for 7 weeks in dystrophic mdx mice. Expression microarray analysis revealed decreased aerobic metabolism in the gastrocnemius muscle of mdx mice compared to healthy mice. This was not due to reduced home-cage physical activity, and was further downregulated upon sActRIIB-Fc treatment in enlarged muscles. However, exercise activated pathways of aerobic metabolism and counteracted the negative effects of sActRIIB-Fc. Exercise and sActRIIB-Fc synergistically increased expression of major urinary protein, but exercise blocked sActRIIB-Fc induced phosphorylation of STAT5 in gastrocnemius muscle. In conclusion, exercise alone or in combination with myostatin/activin blocking corrects aerobic gene expression profiles of dystrophic muscle toward healthy wild type mice profiles.
Collapse
Affiliation(s)
- Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Konstantinos G Papaioannou
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Reija Autio
- Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, P.O. BOX 553, Tampere FI-33101, Finland
| | - Janne Saarela
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Bernardo M Oliveira
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Miro Nyqvist
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku FIN-20520, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center (LUMC), Postzone S-04-P, PO Box 9600, Leiden 2300 RC, The Netherlands
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, Jyväskylä FI-40014, Finland.
| |
Collapse
|
40
|
Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 2014; 44:743-62. [PMID: 24728927 DOI: 10.1007/s40279-014-0162-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.
Collapse
|
41
|
Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: A meta-analysis. Eur J Sport Sci 2014; 16:1-10. [DOI: 10.1080/17461391.2014.989922] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Ivy JL, Schoenfeld BJ. The Timing of Postexercise Protein Ingestion Is/Is Not Important. Strength Cond J 2014. [DOI: 10.1519/ssc.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Golberg ND, Druzhevskaya AM, Rogozkin VA, Ahmetov II. Role of mTOR in the regulation of skeletal muscle metabolism. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714040070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Stefanetti RJ, Lamon S, Wallace M, Vendelbo MH, Russell AP, Vissing K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch 2014; 467:1523-1537. [DOI: 10.1007/s00424-014-1587-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 12/30/2022]
|
45
|
Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations? Sports Med 2014; 43:1279-88. [PMID: 23955603 DOI: 10.1007/s40279-013-0088-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In humans, regimented resistance training has been shown to promote substantial increases in skeletal muscle mass. With respect to traditional resistance training methods, the prevailing opinion is that an intensity of greater than ~60 % of 1 repetition maximum (RM) is necessary to elicit significant increases in muscular size. It has been surmised that this is the minimum threshold required to activate the complete spectrum of fiber types, particularly those associated with the largest motor units. There is emerging evidence, however, that low-intensity resistance training performed with blood flow restriction (BFR) can promote marked increases in muscle hypertrophy, in many cases equal to that of traditional high-intensity exercise. The anabolic effects of such occlusion-based training have been attributed to increased levels of metabolic stress that mediate hypertrophy at least in part by enhancing recruitment of high-threshold motor units. Recently, several researchers have put forth the theory that low-intensity exercise (≤50 % 1RM) performed without BFR can promote increases in muscle size equal, or perhaps even superior, to that at higher intensities, provided training is carried out to volitional muscular failure. Proponents of the theory postulate that fatiguing contractions at light loads is simply a milder form of BFR and thus ultimately results in maximal muscle fiber recruitment. Current research indicates that low-load exercise can indeed promote increases in muscle growth in untrained subjects, and that these gains may be functionally, metabolically, and/or aesthetically meaningful. However, whether hypertrophic adaptations can equal that achieved with higher intensity resistance exercise (≤60 % 1RM) remains to be determined. Furthermore, it is not clear as to what, if any, hypertrophic effects are seen with low-intensity exercise in well-trained subjects as experimental studies on the topic in this population are lacking. Practical implications of these findings are discussed.
Collapse
|
46
|
Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985) 2014; 116:693-702. [DOI: 10.1152/japplphysiol.01366.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program ( training+acute). The dominant arm was either unexercised ( control) or subjected to the same acute exercise bout as the trained arm ( acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations.
Collapse
Affiliation(s)
- G. A. Nader
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - F. von Walden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - C. Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - J. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - L. Gutmann
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - E. E. Pistilli
- Byrd Health Science Center, West Virginia University, Morgantown, West Virginia; and
| | - P. M. Gordon
- School of Education, Health, Human Performance, and Recreation, Baylor University, Waco, Texas
| |
Collapse
|
47
|
Stefanetti RJ, Lamon S, Rahbek SK, Farup J, Zacharewicz E, Wallace MA, Vendelbo MH, Russell AP, Vissing K. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. J Appl Physiol (1985) 2014; 116:1491-502. [PMID: 24458747 DOI: 10.1152/japplphysiol.00136.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Knowledge from human exercise studies on regulators of muscle atrophy is lacking, but it is important to understand the underlying mechanisms influencing skeletal muscle protein turnover and net protein gain. This study examined the regulation of muscle atrophy-related factors, including atrogin-1 and MuRF1, their upstream transcription factors FOXO1 and FOXO3A and the atrogin-1 substrate eIF3-f, in response to unilateral isolated eccentric (ECC) vs. concentric (CONC) exercise and training. Exercise was performed with whey protein hydrolysate (WPH) or isocaloric carbohydrate (CHO) supplementation. Twenty-four subjects were divided into WPH and CHO groups and completed both single-bout exercise and 12 wk of training. Single-bout ECC exercise decreased atrogin-1 and FOXO3A mRNA compared with basal and CONC exercise, while MuRF1 mRNA was upregulated compared with basal. ECC exercise downregulated FOXO1 and phospho-FOXO1 protein compared with basal, and phospho-FOXO3A was downregulated compared with CONC. CONC single-bout exercise mediated a greater increase in MuRF1 mRNA and increased FOXO1 mRNA compared with basal and ECC. CONC exercise downregulated FOXO1, FOXO3A, and eIF3-f protein compared with basal. Following training, an increase in basal phospho-FOXO1 was observed. While WPH supplementation with ECC and CONC training further increased muscle hypertrophy, it did not have an additional effect on mRNA or protein levels of the targets measured. In conclusion, atrogin-1, MuRF1, FOXO1/3A, and eIF3-f mRNA, and protein levels, are differentially regulated by exercise contraction mode but not WPH supplementation combined with hypertrophy-inducing training. This highlights the complexity in understanding the differing roles these factors play in healthy muscle adaptation to exercise.
Collapse
Affiliation(s)
- Renae J Stefanetti
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Stine K Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| | - Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Marita A Wallace
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Mikkel H Vendelbo
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
48
|
Neubauer O, Sabapathy S, Ashton KJ, Desbrow B, Peake JM, Lazarus R, Wessner B, Cameron-Smith D, Wagner KH, Haseler LJ, Bulmer AC. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling. J Appl Physiol (1985) 2013; 116:274-87. [PMID: 24311745 DOI: 10.1152/japplphysiol.00909.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reprogramming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time course-dependent changes in the muscular transcriptome after an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h postexercise from eight healthy, endurance-trained men. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three hours postexercise, 102 gene sets were upregulated [family wise error rate (FWER), P < 0.05], including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1 signaling. Forty-eight hours postexercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were upregulated. Ninety-six hours postexercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were upregulated, including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h postexercise transcriptome indicates substantial transcriptional activity potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.
Collapse
Affiliation(s)
- Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability, Research Platform Active Aging, and Department of Nutritional Sciences, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf) 2013; 209:283-94. [PMID: 24112827 DOI: 10.1111/apha.12174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/22/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
AIM This study assessed and compared acute muscle molecular responses before and after 5-week training, employing either aerobic (AE) and resistance exercise (RE) or RE only. METHODS Ten men performed one-legged RE, while the contralateral limb performed AE followed by RE 6 h later (AE+RE). Before (untrained) and after (trained) the intervention, acute bouts of RE were performed with or without preceding AE. Biopsies were obtained from m. vastus lateralis of each leg pre- and 3 h post-RE to determine mRNA levels of VEGF, PGC-1α, MuRF-1, atrogin-1, myostatin and phosphorylation of mTOR, p70S6K, rpS6 and eEF2. RESULTS PGC-1α and VEGF expression increased (P < 0.05) after acute RE in the untrained, but not the trained state. These markers showed greater response after AE+RE than RE in either condition. Myostatin was lower after AE+RE than RE, both before and after training. AE+RE showed higher MuRF-1 and atrogin-1 expression than RE in the untrained, not the trained state. Exercise increased (P < 0.05) p70S6K phosphorylation both before and after training, yet this increase tended to be more prominent for AE+RE than RE before training. Phosphorylation of p70S6K was greater in trained muscle. Changes in these markers did not correlate with exercise-induced alterations in strength or muscle size. CONCLUSION Concurrent exercise in untrained skeletal muscle prompts global molecular responses consistent with resulting whole muscle adaptations. Yet, training blunts the more robust anabolic response shown after AE+RE compared with RE. This study challenges the concept that single molecular markers could predict training-induced changes in muscle size or strength.
Collapse
Affiliation(s)
- R. Fernandez-Gonzalo
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Laboratory Medicine; Division of Clinical Physiology; Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - T. R. Lundberg
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| | - P. A. Tesch
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Health Sciences; Mid Sweden University; Östersund Sweden
| |
Collapse
|
50
|
Schroeder ET, Villanueva M, West DDW, Phillips SM. Are Acute Post–Resistance Exercise Increases in Testosterone, Growth Hormone, and IGF-1 Necessary to Stimulate Skeletal Muscle Anabolism and Hypertrophy? Med Sci Sports Exerc 2013; 45:2044-51. [DOI: 10.1249/mss.0000000000000147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|