1
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
2
|
Wulf S, Mizko L, Herrmann KH, Sánchez-Carbonell M, Urbach A, Lemke C, Berndt A, Loeffler I, Wolf G. Targeted Disruption of the MORG1 Gene in Mice Causes Embryonic Resorption in Early Phase of Development. Biomolecules 2023; 13:1037. [PMID: 37509073 PMCID: PMC10377003 DOI: 10.3390/biom13071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1+/- mice developed normally without any apparent phenotype, there were no live-born Morg1-/- knockout offspring, indicating embryonic lethality. The intrauterine death of Morg1-/- embryos is caused by a severe failure to develop brain and other neuronal structures such as the spinal cord and a failure of chorioallantoic fusion. On E8.5, Morg1-/- embryos showed severe underdevelopment and proliferative arrest as indicated by absence of Ki67 expression, impaired placental vascularization and altered phenotype of trophoblast giant cells. On E9.5, the malformed Morg1-/- embryos showed defective turning into the final fetal position and widespread apoptosis in many structures. In the subsequent days, apoptosis and decomposition of embryonic tissue progressed, accompanied by a massive infiltration of inflammatory cells. Developmental aberrancies were accompanied by altered expression of HIF-1/2α and VEGF-A and caspase-3 activation in embryos and extraembryonic tissues. In conclusion, the results suggest a multifactorial process that causes embryonic death in homozygous Morg1 mutant mice, described here, to the best of our knowledge, for the first time.
Collapse
Affiliation(s)
- Sophie Wulf
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Luisa Mizko
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, 07747 Jena, Germany
| | | | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Cornelius Lemke
- Institute for Anatomy I, Jena University Hospital, 07743 Jena, Germany
| | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, 07743 Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
3
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
4
|
Neira F, Neira N, Torres J, González-Ortiz M. Physiological and Pathophysiological Role of Large-Conductance Calcium-Activated Potassium Channels (BKCa) in HUVECs and Placenta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:71-82. [PMID: 37466769 DOI: 10.1007/978-3-031-32554-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BKCa channels (large-conductance Ca2+-activated K+ channels) play a critical role in regulating vascular tone and blood pressure. These channels are present in the smooth muscle cells of blood vessels and are activated by voltage and increased intracellular Ca2+ concentration. More recently, the expression and activity of BKCa have been proposed to be relevant in endothelial cells, too, specifically in human umbilical vein endothelial cells (HUVECs), the more studied cell type in the fetoplacental circulation. The role of BKCa in endothelial cells is not well understood, but in HUVECs or placental endothelium, these channels could be crucial for vascular tone regulation during pregnancy as part of endothelium-derived hyperpolarization (EDH), a key mechanism for an organ that lacks nervous system innervation like the placenta.In this review, we will discuss the evidence about the role of BKCa (and other Ca2+-activated K+ channels) in HUVECs and the placenta to propose a physiological mechanism for fetoplacental vascular regulation and a pathophysiological role of BKCa, mainly associated with pregnancy pathologies that present maternal hypertension and/or placental hypoxia, like preeclampsia.
Collapse
Affiliation(s)
- Fernanda Neira
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Nataly Neira
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Javier Torres
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Wu M, Zhao Y, Li L, Wang G, Xing L. Exosomal microRNA‑302a promotes trophoblast migration and proliferation, and represses angiogenesis by regulating the expression levels of VEGFA in preeclampsia. Mol Med Rep 2021; 24:864. [PMID: 34676880 DOI: 10.3892/mmr.2021.12504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/10/2021] [Indexed: 11/06/2022] Open
Abstract
The global morbidity rate of preeclampsia (PE) is 3‑7, and 10‑20% of maternal deaths are associated with PE. However, the mechanism of its pathogenesis remains unknown. The aim of the present study was to examine the relationship between microRNA‑302a (miR‑302a) and PE. Firstly, the relative expression levels of miR‑302a in placental tissues from patients with PE and normal controls were analyzed using reverse transcription‑quantitative PCR. miR‑302a expression was upregulated in PE tissues, particularly in severe PE. Subsequently, HTR‑8/SVneo cells were transfected with miR‑302a vectors to overexpress miR‑302a. The overexpression of miR‑302a markedly promoted cell proliferation, colony formation, migration and invasion in vitro. Subsequently, the present study examined the function of exosomes secreted by HTR‑8/SVneo cells transfected with miR‑302a vectors. Compared with the negative control vector group, miR‑302a expression was markedly increased in exosomes in the miR‑302a overexpression group. Additionally, exosomes with miR‑302a overexpression had repressed HUVEC invasion and ring formation. The luciferase reporter assay indicated that VEGFA was a direct target of miR‑302a, and miR‑302a expression was negatively correlated with VEGFA expression. In conclusion, the present results demonstrated that upregulation of miR‑302a may promote HTR‑8/SVneo cell proliferation, migration and invasion, and repress angiogenesis by targeting VEGFA, indicating that miR‑302a may be a potential target for the development of PE therapies.
Collapse
Affiliation(s)
- Maoqin Wu
- Department of Obstetrics, Jinan City People's Hospital, Jinan, Shandong 271199, P.R. China
| | - Yongqiang Zhao
- Department of Obstetrics and Gynecology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271126, P.R. China
| | - Lun Li
- Department of Obstetrics, Jinan City People's Hospital, Jinan, Shandong 271199, P.R. China
| | - Gang Wang
- Department of Obstetrics, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250000, P.R. China
| | - Lin Xing
- Department of Obstetrics and Gynecology, Jinan Fourth People Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
6
|
A new approach to assessment of reproductive losses of the first trimester of pregnancy. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Rojas S, Basualto E, Valdivia L, Vallejos N, Ceballos K, Peña E, Rivas C, Nualart F, Guzmán-Gutiérrez E, Escudero C, Toledo F, Sobrevia L, Cid M, González M. The activity of IKCa and BKCa channels contributes to insulin-mediated NO synthesis and vascular tone regulation in human umbilical vein. Nitric Oxide 2020; 99:7-16. [PMID: 32165314 DOI: 10.1016/j.niox.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 01/16/2023]
Abstract
Insulin regulates the l-arginine/nitric oxide (NO) pathway in human umbilical vein endothelial cells (HUVECs), increasing the plasma membrane expression of the l-arginine transporter hCAT-1 and inducing vasodilation in umbilical and placental veins. Placental vascular relaxation induced by insulin is dependent of large conductance calcium-activated potassium channels (BKCa), but the role of KCa channels on l-arginine transport and NO synthesis is still unknown. The aim of this study was to determine the contribution of KCa channels in both insulin-induced l-arginine transport and NO synthesis, and its relationship with placental vascular relaxation. HUVECs, human placental vein endothelial cells (HPVECs) and placental veins were freshly isolated from umbilical cords and placenta from normal pregnancies. Cells or tissue were incubated in absence or presence of insulin and/or tetraethylammonium, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, iberiotoxin or NG-nitro-l-arginine methyl ester. l-Arginine uptake, plasma membrane polarity, NO levels, hCAT-1 expression and placenta vascular reactivity were analyzed. The inhibition of intermediate-conductance KCa (IKCa) and BKCa increases l-arginine uptake, which was related with protein abundance of hCAT-1 in HUVECs. IKCa and BKCa activities contribute to NO-synthesis induced by insulin but are not directly involved in insulin-stimulated l-arginine uptake. Long term incubation (8 h) with insulin increases the plasma membrane hyperpolarization and hCAT-1 expression in HUVECs and HPVECs. Insulin-induced relaxation in placental vasculature was reversed by KCa inhibition. The results show that the activity of IKCa and BKCa channels are relevant for both physiological regulations of NO synthesis and vascular tone regulation in the human placenta, acting as a part of negative feedback mechanism for autoregulation of l-arginine transport in HUVECs.
Collapse
Affiliation(s)
- Susana Rojas
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Emerita Basualto
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Luz Valdivia
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Natalia Vallejos
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karen Ceballos
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia Rivas
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y Células Madres Neuro-CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD, Queensland, Australia
| | - Marcela Cid
- Departmento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile.
| |
Collapse
|
8
|
Effect of Oxidative Stress on the Estrogen-NOS-NO-K Ca Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9194269. [PMID: 30881600 PMCID: PMC6387699 DOI: 10.1155/2019/9194269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Abstract
During pregnancy, the adaptive changes in uterine circulation and the formation of the placenta are essential for the growth of the fetus and the well-being of the mother. The steroid hormone estrogen plays a pivotal role in this adaptive process. An insufficient blood supply to the placenta due to uteroplacental dysfunction has been associated with pregnancy complications including preeclampsia and intrauterine fetal growth restriction (IUGR). Oxidative stress is caused by an imbalance between free radical formation and antioxidant defense. Pregnancy itself presents a mild oxidative stress, which is exaggerated in pregnancy complications. Increasing evidence indicates that oxidative stress plays an important role in the maladaptation of uteroplacental circulation partly by impairing estrogen signaling pathways. This review is aimed at providing both an overview of our current understanding of regulation of the estrogen-NOS-NO-KCa pathway by reactive oxygen species (ROS) in uteroplacental tissues and a link between oxidative stress and uteroplacental dysfunction in pregnancy complications. A better understanding of the mechanisms will facilitate the development of novel and effective therapeutic interventions.
Collapse
|
9
|
Gimenez LG, Momany AM, Poletta FA, Krupitzki HB, Gili JA, Busch TD, Saleme C, Cosentino VR, Pawluk MS, Campaña H, Gadow EC, Murray JC, Lopez-Camelo JS. Association of candidate gene polymorphisms with clinical subtypes of preterm birth in a Latin American population. Pediatr Res 2017; 82:554-559. [PMID: 28426651 PMCID: PMC5570637 DOI: 10.1038/pr.2017.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022]
Abstract
BackgroundPreterm birth (PTB) is the leading cause of neonatal mortality and morbidity. PTB is often classified according to clinical presentation as follows: idiopathic (PTB-I), preterm premature rupture of membranes (PTB-PPROM), and medically induced (PTB-M). The aim of this study was to evaluate the associations between specific candidate genes and clinical subtypes of PTB.MethodsTwenty-four single-nucleotide polymorphisms (SNPs) were genotyped in 18 candidate genes in 709 infant triads. Of them, 243 were PTB-I, 256 were PTB-PPROM, and 210 were PTB-M. These data were analyzed with a Family-Based Association.ResultsPTB was nominally associated with rs2272365 in PON1, rs883319 in KCNN3, rs4458044 in CRHR1, and rs610277 in F3. Regarding clinical subtypes analysis, three SNPs were associated with PTB-I (rs2272365 in PON1, rs10178458 in COL4A3, and rs4458044 in CRHR1), rs610277 in F3 was associated with PTB-PPROM, and rs883319 in KCNN3 and rs610277 in F3 were associated with PTB-M.ConclusionOur study identified polymorphisms potentially associated with specific clinical subtypes of PTB in this Latin American population. These results could suggest a specific role of such genes in the mechanisms involved in each clinical subtype. Further studies are required to confirm our results and to determine the role of these genes in the pathophysiology of clinical subtypes.
Collapse
Affiliation(s)
- Lucas G. Gimenez
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| | | | - Fernando A. Poletta
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| | - Hugo B. Krupitzki
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Juan A. Gili
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| | - Tamara D. Busch
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Cesar Saleme
- Maternity Nuestra Señora de la Merced, Tucumán, Argentina
| | - Viviana R. Cosentino
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| | - Mariela S. Pawluk
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| | - Hebe Campaña
- CIC (Comisión de Investigaciones Científicas), La Plata, Buenos Aires, Argentina
| | - Enrique C. Gadow
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | | | - Jorge S. Lopez-Camelo
- Research Unit, CEMIC-CONICET (Centro de Educación Médica e Investigaciones Clínicas-Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina,ECLAMC (Estudio Colaborativo Latinoamericano de Malformaciones Congénitas) at INAGEMP (Instituto Nacional de Genética Médica Populacional), Buenos Aires, Argentina
| |
Collapse
|
10
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|