1
|
Mak IEK, Yao Y, Ng MTT, Kim JE. Influence of dietary protein and fiber intake interactions on the human gut microbiota composition and function: a systematic review and network meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 39815995 DOI: 10.1080/10408398.2025.2452362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Quantity and source of dietary protein intakes impact the gut microbiota differently. However, these effects have not been systematically studied. This review aimed to investigate these effects whilst controlling for fiber intake. Seven databases were searched, with 50 and 15 randomized controlled trials selected for the systematic review and network meta-analysis respectively. Most gut microbiota-related outcomes showed no significant differences between different protein and fiber intake combinations. Compared to Normal Protein, High Fiber intakes, High Protein, Low Fiber (HPLF) intakes showed greater fecal valerate (SMD = 0.79, 95% CrI: 0.35, 1.24) and plasma trimethylamine N-oxide (TMAO) (SMD = 2.90, 95% CrI: 0.16, 5.65) levels. HPLF intakes also showed greater fecal propionate (SMD = 0.49, 95% CrI: 0.02, 1.07) and valerate (SMD = 0.79, 95% CrI: 0.31, 1.28) levels compared to High Protein, High Fiber intakes. Greater plasma TMAO levels were observed with greater animal protein intakes. Overall, protein quantity and source do not generally alter the gut microbiota composition, although protein quantity can influence microbiota function via modulations in proteolytic fermentation. Both protein and fiber intake should be considered when assessing the impact of dietary protein on the gut microbiota. This trial was registered at PROSPERO (CRD42023391270).
Collapse
Affiliation(s)
- Ian En Kai Mak
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yueying Yao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Magdeline Tao Tao Ng
- National University of Singapore Libraries, National University of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- National University of Singapore Libraries, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
3
|
Fuchs CJ, Trommelen J, Weijzen MEG, Smeets JSJ, van Kranenburg J, Verdijk LB, van Loon LJC. Becoming a World Champion Powerlifter at 71 Years of Age: It Is Never Too Late to Start Exercising. Int J Sport Nutr Exerc Metab 2024; 34:223-231. [PMID: 38458181 DOI: 10.1123/ijsnem.2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between -1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7-6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5-48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707-3,488] μm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132-147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23-26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Michelle E G Weijzen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Joey S J Smeets
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Janneau van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
4
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
5
|
Lin YH, Li XH, Zhao HT, Chen JH, Li JQ, Yan Y. Short-term resistance training combined with cheese supplementation can optimize body parameters and intestinal microbiota in healthy adults. J Exerc Sci Fit 2024; 22:168-177. [PMID: 38464601 PMCID: PMC10920736 DOI: 10.1016/j.jesf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background Resistance training (RT) and protein supplementation have beneficial effects on the human body. However, it is unknown if RT's health-promoting benefits are enhanced by food-borne protein, such as cheese supplements. This study investigated at how the body composition, lipid profile, muscle strength and intestinal microbiota changed following four weeks of RT combined with cheese supplementation. Methods Thirty-five male and untrained adults were divided into 4 groups [control group (CON), low-dose group (LG), medium-dose group (MG), and high-dose group (HG)] and underwent a 4-week RT (3 times/week) in combination with cheese supplementation. Participants received 108 g (LG), 216 g (MG), or 324 g (HG) of cheese on the day of RT, and each serving (108 g) of cheese contained 6.7 g of food-borne protein. The RT program was a whole-body program with movements such as chest presses, leg presses, seated rowing, knee extensions and triceps pushdown. The exercise consisted of 3 sets of 8-12 repetitions at 70%RM, with a 120-s break in between. Body parameters (body composition, lipid profile and muscle strength) were assessed at baseline and after the 4 weeks of the intervention. The feces sample was taken every weekend. A two-way (group × time) mixed-design ANOVA was used to examine the body parameters. Independent one-way ANOVA was used to analyze the differences between groups in baseline characteristics and different values of each parameter. Results HDL-C level was higher in MG than in LG. In comparison to LG, MG had lower levels of total cholesterol, low-density lipoprotein cholesterol, body weight, body mass index, body fat mass and body fat percentage. However, there was no difference in muscle strength between in the four groups. The abundance of Actinobacteria was higher in LG and Erysipelotrichaceae was lower in MG and HG. Conclusion The findings suggest that cheese could be a readily available food-borne protein supplement to enhance the beneficial effects of RT on health. It may improve body composition and lipid profile by altering the proportion of intestinal microbiota. During the 4-week RT intervention, 13.4 g of foodborne protein in the form of cheese 3 times per week was the ideal dosage.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Xue-Han Li
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Hao-Tian Zhao
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
- Jiangnan University, Jiangsu, 214122, China
| | - Jian-Hao Chen
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Jia-Qi Li
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Yi Yan
- Department of Sports Biochemistry, Sport Science School, Beijing Sport University, Beijing, 100084, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, 100084, China
| |
Collapse
|
6
|
Liao CD, Huang SW, Chen HC, Huang MH, Liou TH, Lin CL. Comparative Efficacy of Different Protein Supplements on Muscle Mass, Strength, and Physical Indices of Sarcopenia among Community-Dwelling, Hospitalized or Institutionalized Older Adults Undergoing Resistance Training: A Network Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:941. [PMID: 38612975 PMCID: PMC11013298 DOI: 10.3390/nu16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Aging-related sarcopenia exerts harmful impacts on muscle mass, strength, and physical mobility. Protein supplementation has been demonstrated to augment efficacy of resistance training (RT) in elderly. This study compared the relative effects of different protein supplements on muscle mass, strength, and mobility outcomes in middle-aged and older individuals undergoing RT. A comprehensive search of online databases was performed to identify randomized controlled trials (RCTs) examining the efficacy of protein supplement plus RT in untrained community-dwelling adults, hospitalized, or institutionalized residents who suffered acute or chronic health conditions. Network meta-analysis (NMA) was performed using a frequentist method for all analyses. Treatment effects for main outcomes were expressed as standard mean difference (SMD) with 95% confidence interval (CI). We used the surface-under-the cumulative-ranking (SUCRA) scores to rank probabilities of effect estimation among all identified treatments. Meta-regression analyses were performed to identify any relevant moderator of the treatment efficacy and results were expressed as β with 95% credible interval (CrI). We finally included 78 RCTs (5272 participants) for analyses. Among the six protein sources identified in this NMA, namely whey, milk, casein, meat, soy, and peanut, whey supplement yielded the most effective treatments augmenting efficacy of RT on muscle mass (SMD = 1.29, 95% CI: 0.96, 1.62; SUCRA = 0.86), handgrip strength (SMD = 1.46, 95% CI: 0.92, 2.00; SUCRA = 0.85), and walking speed (SMD = 0.73, 95% CI: 0.39, 1.07; SUCRA = 0.84). Participant's health condition, sex, and supplementation dose were significant factors moderating the treatment efficacy on muscle mass (β = 0.74; 95% CrI: 0.22, 1.25), handgrip strength (β = -1.72; 95% CrI: -2.68, -0.77), and leg strength (β = 0.76; 95% CrI: 0.06, 1.47), respectively. Our findings suggest whey protein yields the optimal supplements to counter sarcopenia in older individuals undergoing RT.
Collapse
Affiliation(s)
- Chun-De Liao
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, New Taipei City 110301, Taiwan;
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Mao-Hua Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98015, USA;
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
| |
Collapse
|
7
|
Cullen JMA, Shahzad S, Kanaley JA, Ericsson AC, Dhillon J. The effects of 6 wk of resistance training on the gut microbiome and cardiometabolic health in young adults with overweight and obesity. J Appl Physiol (1985) 2024; 136:349-361. [PMID: 38059291 DOI: 10.1152/japplphysiol.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a known risk factor for the development of insulin resistance and other cardiometabolic disorders. Recently, the gut microbiome has been associated with obesity and subsequent health complications. Exercise has been regularly utilized as a therapeutic intervention to treat obesity and its associated comorbidities. This study examined the effects of a 6-wk resistance training exercise program (RT) on the diversity, composition, and metabolic pathways of the gut microbiome. Sedentary young adults (age 18-35 yr) with overweight and obesity (BMI 25-45 kg/m2) were recruited to participate in this randomized controlled trial. Participants were randomized to RT (n = 16), a 6-wk resistance training program (3 days/wk), or control (CT) (n = 16), a nonexercising control. Main outcomes of the study included gut microbiome measures (taxa abundances, diversity, and predicted function) and cardiometabolic outcomes [blood pressure (BP) and glucoregulation]. Increased abundances of Roseburia, a short-chain fatty acid (SCFA) producer were observed over 6 wk (W6) with RT compared with CT (group × week, P < 0.05, q < 0.25). RT also induced marginal alterations in predicted microbial metabolic and cell motility pathways compared with CT (group × week, P < 0.05, q < 0.25). However, RT did not significantly impact overall microbial diversity. Furthermore, RT resulted in higher quantitative insulin-sensitivity check index (QUICKI) and lower diastolic BP at W6 compared with CT [baseline (BL)-adjusted P < 0.05]. RT had mixed effects on the gut microbiome. Although RT increased abundances of Roseburia and induced minor changes in microbial pathways, it is important to consider these changes in the context of the overall stability observed in the microbiome composition.NEW & NOTEWORTHY Resistance training induces mixed changes in the gut microbiome, including an increase in the abundances of the Roseburia genus and minor alterations in microbial pathways. However, it is vital to interpret these changes in light of the broader context, where we observe stability in the overall microbiome composition. This stability may be attributed to the microbiome's resilience, demonstrating its capacity to withstand short-term physiological stressors.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
8
|
Kazura W, Michalczyk K, Stygar D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients 2023; 15:3082. [PMID: 37513500 PMCID: PMC10385089 DOI: 10.3390/nu15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between gut microbiota and obesity is well documented in humans and animal models. Dietary factors can change the intestinal microbiota composition and influence obesity development. However, knowledge of how diet, metabolism, and intestinal microbiota interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies show a link between consuming dietary proteins and fats from specific sources and obesity. Animal studies confirm that proteins and fats of different origins differ in their ability to prevent or induce obesity. Protein sources, such as meat, dairy products, vegetables, pulses, and seafood, vary in their amino acid composition. In addition, the type and level of other factors, such as fatty acids or persistent organic pollutants, vary depending on the source of dietary protein. All these factors can modulate the intestinal microbiota composition and, thus, may influence obesity development. This review summarizes selected evidence of how proteins and fats of different origins affect energy efficiency, obesity development, and intestinal microbiota, linking protein and fat-dependent changes in the intestinal microbiota with obesity.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
9
|
Grahnemo L, Nethander M, Coward E, Gabrielsen ME, Sree S, Billod JM, Sjögren K, Engstrand L, Dekkers KF, Fall T, Langhammer A, Hveem K, Ohlsson C. Identification of three bacterial species associated with increased appendicular lean mass: the HUNT study. Nat Commun 2023; 14:2250. [PMID: 37080991 PMCID: PMC10119287 DOI: 10.1038/s41467-023-37978-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Appendicular lean mass (ALM) associates with mobility and bone mineral density (BMD). While associations between gut microbiota composition and ALM have been reported, previous studies rely on relatively small sample sizes. Here, we determine the associations between prevalent gut microbes and ALM in large discovery and replication cohorts with information on relevant confounders within the population-based Norwegian HUNT cohort (n = 5196, including women and men). We show that the presence of three bacterial species - Coprococcus comes, Dorea longicatena, and Eubacterium ventriosum - are reproducibly associated with higher ALM. When combined into an anabolic species count, participants with all three anabolic species have 0.80 kg higher ALM than those without any. In an exploratory analysis, the anabolic species count is positively associated with femoral neck and total hip BMD. We conclude that the anabolic species count may be used as a marker of ALM and BMD. The therapeutic potential of these anabolic species to prevent sarcopenia and osteoporosis needs to be determined.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Satya Sree
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Jean-Marc Billod
- Bio-Me, Oslo Science Park, Gaustadalléen 21, N-0349, Oslo, Norway
| | - Klara Sjögren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Biomedicum A8, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Koen F Dekkers
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| |
Collapse
|
10
|
Binet ER, McKenna CF, Salvador AF, Martinez IG, Alamilla RA, Collao N, Bodnariuc G, Khan NA, Paluska SA, Burd NA, De Lisio M. Sex-based comparisons of muscle cellular adaptations after 10 weeks of progressive resistance training in middle-aged adults. J Appl Physiol (1985) 2023; 134:116-129. [PMID: 36454678 DOI: 10.1152/japplphysiol.00274.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Resistance training combined with adequate protein intake supports skeletal muscle strength and hypertrophy. These adaptations are supported by the action of muscle stem cells (MuSCs), which are regulated, in part, by fibro-adipogenic progenitors (FAPs) and circulating factors delivered through capillaries. It is unclear if middle-aged males and females have similar adaptations to resistance training at the cellular level. To address this gap, 27 (13 males, 14 females) middle-aged (40-64 yr) adults participated in 10 wk of whole body resistance training with dietary counseling. Muscle biopsies were collected from the vastus lateralis pre- and posttraining. Type II fiber cross-sectional area increased similarly with training in both sexes (P = 0.014). MuSC content was not altered with training; however, training increased PDGFRα+/CD90+ FAP content (P < 0.0001) and reduced PDGFRα+/CD90- FAP content (P = 0.044), independent of sex. The number of CD31+ capillaries per fiber also increased similarly in both sexes (P < 0.05). These results suggest that muscle fiber hypertrophy, stem/progenitor cell, and capillary adaptations are similar between middle-aged males and females in response to whole body resistance training.NEW & NOTEWORTHY We demonstrate that resistance training-induced increases in fiber hypertrophy, FAP content, and capillarization are similar between middle-aged males and females.
Collapse
Affiliation(s)
- Emileigh R Binet
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Isabel G Martinez
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Rafael A Alamilla
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Giana Bodnariuc
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The intestinal microbiome modulates the risk of several age-related chronic diseases and syndromes, including frailty and neurodegenerative diseases. Herein we provided an update on the influence of gut microbiota on physical and cognitive performance in older age and suggest microbiota-targeted interventions for healthy ageing. RECENT FINDINGS Low uniqueness index of the gut microbiome and high representation of Bacteroides are independently associated with mortality in older individuals, while the centenarian microbiome is characterized by high abundance of Lactobacilli and Bifidobacteria . Frailty syndrome, sarcopenia and cognitive decline are associated with reduced faecal microbiota biodiversity, reduced abundance of bacteria able to synthetize short-chain fatty acids (SCFA), including Faecalibacterium prausnitzii , and reduced faecal butyrate levels. Dietary intervention, especially involving Mediterranean diet, and exercise training seem to be associated with improved biodiversity of the microbiota, increased capacity of SCFA synthesis and, probably, protection against the onset of frailty and cognitive decline. SUMMARY The gut microbiota biodiversity and composition may reflect the different ageing trajectory, but further research is needed to understand potential independent and combined effects of environmental and lifestyle factors in older adults, especially from a clinical point of view.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Andrea Ticinesi
- Department of Medicine and Surgery
- Microbiome Research Hub, University of Parma
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
12
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
13
|
McKenna CF, Salvador AF, Keeble AR, Khan NA, De Lisio M, Konopka AR, Paluska SA, Burd NA. Muscle strength after resistance training correlates to mediators of muscle mass and mitochondrial respiration in middle-aged adults. J Appl Physiol (1985) 2022; 133:572-584. [PMID: 35834627 DOI: 10.1152/japplphysiol.00186.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle aging is a multi-dimensional pathology of atrophy, reduced strength, and oxidative damage. While some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined. In an exploratory investigation, we examined how strength gains with resistance training relate to regulators of both muscle mass and oxidative function in middle-aged adults. Forty-one middle-aged adults (18M, 23F; 50±7y; 27.8±3.7kg/m2; mean±SD) participated in a 10-week resistance training intervention. Muscle biopsies and plasma were sampled at baseline and post-intervention. High-resolution fluo-respirometry was performed on a subset of muscle tissue. Apelin signaling (plasma apelin, P=0.002; Apln mRNA, P<0.001; apelin receptor mRNA Aplnr, P=0.001) increased with resistance training. Muscle Vdr mRNA (P=0.007) and Smox mRNA (P=0.027) were also upregulated after the intervention. Mitochondrial respiratory capacity increased (Vmax, oxidative phosphorylation, and uncoupled electron transport system, P<0.050), yet there were no changes in ADP sensitivity (Km P=0.579), hydrogen peroxide emission (P=0.469), nor transcriptional signals for mitochondrial biogenesis (nuclear respiratory factor 2, Gapba P=0.766) and mitofusion (mitochondrial dynamin like GTPase, Opa1 P=0.072). Muscular strength with resistance training positively correlated to Apln, Aplnr, Vdr, and Smox transcriptional adaptations, as well as mitochondrial respiratory capacity (unadjusted P<0.050, r=0.400-0.781). Further research is required to understand the interrelationships of these targets with aged muscle phenotype.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Amadeo F Salvador
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Alexander R Keeble
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Neuroscience Program, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Michael De Lisio
- School of Human Kinetics and Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam R Konopka
- Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States.,Kinesiology and Community Health, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
14
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kim J, McKenna CF, Salvador AF, Scaroni SE, Askow AT, Cerna J, Cannavale CN, Paluska SA, De Lisio M, Petruzzello SJ, Burd NA, Khan NA. Cathepsin B and Muscular Strength are Independently Associated with Cognitive Control. Brain Plast 2022; 8:19-33. [DOI: 10.3233/bpl-210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Although muscular strength has been linked to greater cognitive function across different cognitive domains, the mechanism(s) through which this occurs remain(s) poorly understood. Indeed, while an emerging body of literature suggests peripheral myokines released from muscular contractions may play a role in this relationship, additional research is needed to understand this link. Accordingly, this study sought to compare the influences of a particular myokine, Cathepsin B (CTSB), and muscular strength on hippocampal-dependent relational memory and cognitive control in 40 adults (age = 50.0±7.3 yrs). Overnight fasted venous blood draws were taken to assess plasma CTSB and muscular strength was assessed as maximal isokinetic strength testing using a Biodex dynamometer. Cognitive performance was assessed using a Spatial Reconstruction Task to assess relational memory and a modified Flanker task to assess cognitive control. Neuroelectric function for cognitive control was assessed using event-related potentials (ERPs) recorded during the Flanker task. Initial bivariate correlational analyses revealed that neither sex, age, lean body mass, or muscular strength was associated with CTSB. However, CTSB was inversely associated with reaction time and fractional peak latency of the P3 component of the Flanker task. Muscular strength was also inversely associated with reaction time and positively associated with relational memory performance. However, the influence of muscular strength on relational memory did not persist following adjustment for covariates. Greater circulating CTSB was selectively associated with greater cognitive control as well as faster information processing speed. These findings are the first to link circulating CTSB to both cognitive control and neuroelectric function. Future intervention studies are needed to examine the effects of changes in muscular strength, circulating myokines, and different domains of cognitive function.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | - Andrew T. Askow
- Department of Kinesiology and Community Health, University of Illinois, USA
| | | | | | | | | | | | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois, USA
- Division of Nutritional Sciences, University of Illinois, USA
| | - Naiman A. Khan
- Department of Kinesiology and Community Health, University of Illinois, USA
- Division of Nutritional Sciences, University of Illinois, USA
- Neuroscience Program, University of Illinois, USA
| |
Collapse
|
16
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
18
|
Gut Microbiota, Microbial Metabolites and Human Physical Performance. Metabolites 2021; 11:metabo11110716. [PMID: 34822374 PMCID: PMC8619554 DOI: 10.3390/metabo11110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
Trillions of microbes inhabiting the gut modulate the metabolism of the host. Cross-sectional studies have reported associations between physical performance and the gut microbiota (GM). Physical activity seems to increase GM diversity and the abundance of certain health-beneficial microbes. We reviewed the evidence from longitudinal studies on the connection between physically active lifestyle or long-term exercise interventions and the GM. We made literature searches using databases of Web of Science and PubMed Medline to collect human studies showing or not the associations between the GM and exercise. Many controversies exist in the studies. However, the longitudinal studies show that frequently, medium-intensity endurance exercise has yielded most beneficial effects on the GM, but the results vary depending on the study population and exercise protocol. In addition, the literature shows that certain microbes own the potency to increase physical activity and performance. Generally, a physically active lifestyle and exercise associate with a “healthy” GM. However, in previously sedentary subjects, the exercise-induced improvements in the GM seem to disappear unless the active lifestyle is continued. Unfortunately, several studies are not controlled for the diet. Thus, in the future, more longitudinal studies on the GM and physical performance are needed, with detailed dietary information.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review will discuss recent studies showing that patients with chronic wasting diseases suffer from a variety of small intestinal impairments which might negatively impact the colonic microbiota and overall well-being. New insights will be addressed as well as novel approaches to assess intestinal function. RECENT FINDINGS Small intestinal dysfunction can enhance the amount and alter the composition of undigested food reaching the colon. As a result of reduced protein digestion and absorption, a large amount of undigested protein might reach the colon promoting the presence of pathogenic colonic bacteria and a switch from bacterial fiber fermentation to protein fermentation. While microbial metabolites of fiber fermentation, such as short-chain fatty acids (SCFA), are mainly considered beneficial for overall health, metabolites of protein fermentation, i.e. ammonia, branched SCFAs, hydrogen sulfide, polyamines, phenols, and indoles, can exert beneficial or deleterious effects on overall health. Substantial advances have been made in the assessment of small intestinal dysfunction in chronic diseases, but studies investigating the connection to colonic microbial metabolism are needed. A promising new stable isotope approach can enable the measurement of metabolite production by the colonic microbiota. SUMMARY Several studies have been conducted to assess intestinal function in chronic diseases. Impairments in intestinal barrier function, sugar absorption, protein digestion, and absorption, as well as small intestinal bacterial overgrowth were observed and possibly might negatively impact colonic bacterial metabolism. We suggest that improving these perturbations will improve overall patient health.
Collapse
Affiliation(s)
- Sarah K Kirschner
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
20
|
Salvador AF, McKenna CF, Paulussen KJM, Keeble AR, Askow AT, Fang HY, Li Z, Ulanov AV, Paluska SA, Moore DR, Burd NA. Early resistance training-mediated stimulation of daily muscle protein synthetic responses to higher habitual protein intake in middle-aged adults. J Physiol 2021; 599:4287-4307. [PMID: 34320223 DOI: 10.1113/jp281907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1 day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1 day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin J M Paulussen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander R Keeble
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew T Askow
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsin-Yu Fang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|