1
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
3
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch 2020; 472:1385-1399. [PMID: 32809061 DOI: 10.1007/s00424-020-02444-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Collapse
Affiliation(s)
- Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.
| | - Julien Auquier
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Edith Renguet
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Marine Angé
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Julien Cumps
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
5
|
Bussey CT, Thaung HPA, Hughes G, Bahn A, Lamberts RR. Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK. Exp Physiol 2018; 103:1067-1075. [PMID: 29873129 DOI: 10.1113/ep087054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023]
Abstract
NEW FINDINGS What is the central question of the study? Is the reduced signalling of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in the heart, responsible for the reduced β-adrenergic responsiveness of the heart in obesity? What is the main finding and its importance? Inhibition of AMPK in isolated hearts prevented the reduced cardiac β-adrenergic responsiveness of obese rats, which was accompanied by reduced phosphorylation of AMPK, a proxy of AMPK activity. This suggests a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart, and it suggests that AMPK might be an important target to restore the β-adrenergic responsiveness in the heart in obesity. ABSTRACT The obesity epidemic impacts heavily on cardiovascular health, in part owing to changes in cardiac metabolism. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in the heart and is regulated by β-adrenoceptors (β-ARs) in normal conditions. In obesity, chronic sympathetic overactivation leads to impaired cardiac β-AR responsiveness, although it is unclear whether AMPK signalling, downstream of β-ARs, contributes to this dysfunction. Therefore, we aimed to determine whether reduced AMPK signalling is responsible for the reduced β-AR responsiveness in obesity. In isolated hearts of lean and obese Zucker rats, we tested β-AR responsiveness to the β1 -AR agonist isoprenaline (ISO, 1 × 10-10 to 5 × 10-8 m) in the absence and presence of the AMPK inhibitor, compound C (CC, 10 μm). The β1 -AR expression and AMPK phosphorylation were assessed by Western blot. β-Adrenergic responsiveness was reduced in the hearts of obese rats (logEC50 of ISO-developed pressure dose-response curves: lean -8.53 ± 0.13 × 10x m versus obese -8.35 ± 0.10 × 10x m ; P < 0.05 lean versus obese, n = 6 per group). This difference was not apparent after AMPK inhibition (logEC50 of ISO-developed pressure curves: lean CC -8.19 ± 0.12 × 10x m versus obese CC 8.17 ± 0.13 × 10x m, P < 0.05, n = 6 per group). β1 -Adrenergic receptor expression and AMPK phosphorylation were reduced in hearts of obese rats (AMPK at Thr172 : lean 1.73 ± 0.17 a.u. versus lean CC 0.81 ± 0.13 a.u., and obese 1.18 ± 0.09 a.u. versus obese CC 0.81 ± 0.16 a.u., P < 0.05, n = 6 per group). Thus, a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart exists, and AMPK might be an important target to restore the reduced cardiac β-adrenergic responsiveness in obesity.
Collapse
Affiliation(s)
- Carol T Bussey
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - H P Aye Thaung
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Bairwa SC, Parajuli N, Dyck JRB. The role of AMPK in cardiomyocyte health and survival. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2199-2210. [PMID: 27412473 DOI: 10.1016/j.bbadis.2016.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Cellular energy homeostasis is a fundamental process that governs the overall health of the cell and is paramount to cell survival. Central to this is the control of ATP generation and utilization, which is regulated by a complex myriad of enzymatic reactions controlling cellular metabolism. In the cardiomyocyte, ATP generated from substrate catabolism is used for numerous cellular processes including maintaining ionic homeostasis, cell repair, protein synthesis and turnover, organelle turnover, and contractile function. In many instances, cardiovascular disease is associated with impaired cardiac energetics and thus the signalling that regulates pathways involved in cardiomyocyte metabolism may be potential targets for pharmacotherapy designed to help treat cardiovascular disease. An important regulator of cardiomyocyte energy homeostasis is adenosine monophosphate-activated protein kinase (AMPK). AMPK is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic activities in the cell via the phosphorylation of multiple proteins involved in metabolic pathways. In addition to the direct role that AMPK plays in the regulation of cardiomyocyte metabolism, AMPK can also either directly or indirectly influence other cellular processes such as regulating mitochondrial function, post-translation acetylation, autophagy, mitophagy, endoplasmic reticulum stress, and apoptosis. Thus, AMPK is implicated in the control of a wide variety of cellular processes that can influence cardiomyocyte health and survival. In this review, we will discuss the important role that AMPK plays in regulating cardiac metabolism, as well as the additional cellular processes that may contribute to cardiomyocyte function and survival in the healthy and the diseased heart. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan. F.C. Glatz.
Collapse
Affiliation(s)
- Suresh C Bairwa
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nirmal Parajuli
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Medicine, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:23-43. [PMID: 27812975 DOI: 10.1007/978-3-319-43589-3_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.
Collapse
|
8
|
Dijk W, Heine M, Vergnes L, Boon MR, Schaart G, Hesselink MKC, Reue K, van Marken Lichtenbelt WD, Olivecrona G, Rensen PCN, Heeren J, Kersten S. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife 2015; 4. [PMID: 26476336 PMCID: PMC4709329 DOI: 10.7554/elife.08428] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) activation via cold exposure is increasingly scrutinized as a potential approach to ameliorate cardio-metabolic risk. Transition to cold temperatures requires changes in the partitioning of energy substrates, re-routing fatty acids to BAT to fuel non-shivering thermogenesis. However, the mechanisms behind the redistribution of energy substrates to BAT remain largely unknown. Angiopoietin-like 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL) activity, is highly expressed in BAT. Here, we demonstrate that ANGPTL4 is part of a shuttling mechanism that directs fatty acids derived from circulating triglyceride-rich lipoproteins to BAT during cold. Specifically, we show that cold markedly down-regulates ANGPTL4 in BAT, likely via activation of AMPK, enhancing LPL activity and uptake of plasma triglyceride-derived fatty acids. In contrast, cold up-regulates ANGPTL4 in WAT, abolishing a cold-induced increase in LPL activity. Together, our data indicate that ANGPTL4 is an important regulator of plasma lipid partitioning during sustained cold. DOI:http://dx.doi.org/10.7554/eLife.08428.001 The body stores energy in the form of fat molecules. Most of these molecules are stored in white fat cells. Other fat cells, the so-called brown fat cells, consume fats and produce heat to maintain body temperature in cold conditions. The capacity of brown fat cells to consume fats has led researchers to investigate whether brown fat cells might be a key to combat obesity. When an organism is cold, fat is shuttled to the brown fat cells. An enzyme called lipoprotein lipase is involved in a process that allows these fat molecules to be taken up by brown fat cells. However, it was not clear exactly how this process works. A protein called Angiopoietin-like 4 (ANGPTL4) inhibits the activity of lipoprotein lipase in white fat cells and is also found at high levels in brown fat cells. Here, Dijk et al. used genetic and biochemical approaches to study the role of ANGPTL4 in the fat cells of mice. The experiments show that when mice are exposed to cold, the levels of ANGPTL4 decrease in the brown fat cells. This allows the activity of lipoprotein lipase to increase so that these cells are able to take up more fat molecules. However, the opposite happens in white fat cells during cold exposure. The levels of ANGPTL4 increase, which decreases the activity of lipoprotein lipase in white fat cells to allow fat molecules to be shuttled specifically to the brown fat cells. Further experiments suggest that the opposite regulation of ANGPTL4 in brown and white fat cells could be due to a protein called AMPK. This protein is found at higher levels in brown fat cells than in white fat cells and is produced by brown fat cells during cold exposure. Taken together, Dijk et al. show that organs and cells work together to ensure that fat molecules are appropriately distributed to cells in need of energy, such as to brown fat cells during cold. How these findings could be used to stimulate fat consumption by brown fat cells in humans remains open for further investigation. DOI:http://dx.doi.org/10.7554/eLife.08428.002
Collapse
Affiliation(s)
- Wieneke Dijk
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Univeristy Medical Center, Leiden, The Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | | | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Univeristy Medical Center, Leiden, The Netherlands
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
9
|
Abstract
The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system's homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte's function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart's metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions.
Collapse
Affiliation(s)
- Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| |
Collapse
|
10
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol 2013; 366:180-93. [PMID: 22750050 DOI: 10.1016/j.mce.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One important serine/threonine protein kinase that monitors cellular energy status in the heart is adenosine monophosphate activated protein kinase (AMPK). AMPK is also a key enzyme that controls multiple catabolic and anabolic biochemical pathways in the heart and indirectly plays a crucial role in regulating cardiac function in both physiological and pathophysiological conditions. Herein, we review the involvement of AMPK in myocardial fatty acid and glucose transport and utilization, as it relates to basal cardiac function. We also assess the literature amassed on cardiac AMPK and discuss the controversies surrounding the role of AMPK in physiological and pathophysiological processes in the heart. The work reviewed herein also emphasizes areas that require further investigation for the purpose of eventually translating this information into improved patient care.
Collapse
Affiliation(s)
- Jeevan Nagendran
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
5'-AMP-activated protein kinase is inactivated by adrenergic signalling in adult cardiac myocytes. Biosci Rep 2012; 32:197-213. [PMID: 21851339 DOI: 10.1042/bsr20110076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In adult rat cardiac myocytes adrenaline decreased AMPK (AMP-activated protein kinase) activity with a half-time of approximately 4 min, decreased phosphorylation of AMPK (α-Thr172) and decreased phosphorylation of ACC (acetyl-CoA carboxylase). Inactivation of AMPK by adrenaline was through both α1- and β-ARs (adrenergic receptors), but did not involve cAMP or calcium signalling, was not blocked by the PKC (protein kinase C) inhibitor BIM I (bisindoylmaleimide I), by the ERK (extracellular-signal-regulated kinase) cascade inhibitor U0126 or by PTX (pertussis toxin). Adrenaline caused no measurable change in LKB1 activity. Adrenaline decreased AMPK activity through a process that was distinct from AMPK inactivation in response to insulin or PMA. Neither adrenaline nor PMA altered the myocyte AMP:ATP ratio although the adrenaline effect was attenuated by oligomycin and by AICAR (5-amino-4-imidazolecarboxamide-1-β-D-ribofuranoside), agents that mimic 'metabolic stress'. Inactivation of AMPK by adrenaline was abolished by 1 μM okadaic acid suggesting that activation of PP2A (phosphoprotein phosphatase 2A) might mediate the adrenaline effect. However, no change in PP2A activity was detected in myocyte extracts. Adrenaline increased phosphorylation of the AMPK β-subunit in vitro but there was no detectable change in vivo in phosphorylation of previously identified AMPK sites (β-Ser24, β-Ser108 or β-Ser182) suggesting that another site(s) is targeted.
Collapse
|
13
|
Passariello CL, Gottardi D, Cetrullo S, Zini M, Campana G, Tantini B, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM, Stefanelli C. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:800-7. [PMID: 22230191 DOI: 10.1016/j.bbamcr.2011.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/11/2023]
Abstract
The responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment. At the same time, isoproterenol stimulated the phosphorylation of AMPKα catalytic subunits (Thr172), that was associated to an increase in acetyl coenzyme A carboxylase (Ser72) phosphorylation. Downregulation of both α1 and α2 isoforms of the AMPK catalytic subunit by siRNA to knockdown AMPK enzymatic activity, led to superinduction of ODC in isoproterenol-treated cardiomyoblasts. Downregulation of AMPKα increased ODC activity even in cells treated with other adrenergic agonists and in control cells. Analogue results were obtained in SH-SY5Y neuroblastoma cells transfected with a shRNA construct against AMPKα. In conclusion, isoproterenol quickly activates in H9c2 cardiomyoblasts two events that seem to contrast one another. The first one, an increase in ODC activity, is linked to cell growth, whereas the second, AMPK activation, is a homeostatic mechanism that negatively modulates the first. The modulation of ODC activity by AMPK represents a mechanism that may contribute to control cell growth processes.
Collapse
|
14
|
Boardman NT, Larsen TS, Severson DL, Essop MF, Aasum E. Chronic and acute exposure of mouse hearts to fatty acids increases oxygen cost of excitation-contraction coupling. Am J Physiol Heart Circ Physiol 2011; 300:H1631-6. [DOI: 10.1152/ajpheart.01190.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to evaluate the underlying processes involved in the oxygen wasting induced by inotropic drugs and acute and chronic elevation of fatty acid (FA) supply, using unloaded perfused mouse hearts from normal and type 2 diabetic ( db/db) mice. We found that an acute elevation of the FA supply in normal hearts, as well as a chronic (in vivo) exposure to elevated FA as in db/db hearts, increased myocardial oxygen consumption (MV̇o2unloaded) due to increased oxygen cost for basal metabolism and for excitation-contraction (EC) coupling. Isoproterenol stimulation, on top of a high FA supply, led to an additive increase in MV̇o2unloaded, because of a further increase in oxygen cost for EC coupling. In db/db hearts, the acute elevation of FA did not further increase MV̇o2. Since the elevation in the FA supply is accompanied by increased rates of myocardial FA oxidation, the present study compared MV̇o2 following increased FA load versus FA oxidation rate by exposing normal hearts to normal and high FA concentration (NF and HF, respectively) and to compounds that either stimulate (GW-610742) or inhibit [dichloroacetate (DCA)] FA oxidation. While HF and NF + GW-610742 increased FA oxidation to the same extent, only HF increased MV̇o2unloaded. Although DCA counteracted the HF-induced increase in FA oxidation, DCA did not reduce MV̇o2unloaded. Thus, in normal hearts, acute FA-induced oxygen waste is 1) due to an increase in the oxygen cost for both basal metabolism and EC coupling and 2) not dependent on the myocardial FA oxidation rate per se, but on processes initiated by the presence of FAs. In diabetic hearts, chronic exposure to elevated circulating FAs leads to adaptations that afford protection against the detrimental effect of an acute FA load, suggesting different underlying mechanisms behind the increased MV̇o2 following acute and chronic FA load.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Terje S. Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - David L. Severson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada; and
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
15
|
Passariello CL, Zini M, Nassi PA, Pignatti C, Stefanelli C. Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts. Biochem Biophys Res Commun 2011; 407:512-6. [PMID: 21414296 DOI: 10.1016/j.bbrc.2011.03.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 01/30/2023]
Abstract
The sirtuin SIRT1 is an ubiquitous NAD(+) dependent deacetylase that plays a role in biological processes such as longevity and stress response. In cardiac models, SIRT1 is associated to protection against many stresses. However, the link between SIRT1 and heart hypertrophy is complex and not fully understood. This study focuses specifically on the response of SIRT1 to the α-adrenergic agonist phenylephrine in H9c2 cardiac myoblasts, a cell model of cardiac hypertrophy. After 24 and 48h of phenylephrine treatment, SIRT1 expression and deacetylase activity were significantly increased. SIRT1 upregulation by phenylephrine was not associated to changes in NAD(+) levels, but was blocked by inhibitors of AMP-activated Protein Kinase (AMPK) or by AMPK knockdown by siRNA. When SIRT1 was inhibited with sirtinol or downregulated by siRNA, H9c2 cell viability was significantly decreased following phenylephrine treatment, showing that SIRT1 improves cell survival under hypertrophic stress. We so then propose that the increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, suggesting that adrenergic stimulation of heart cells activates hypertrophic programming and at the same time also promotes a self-protecting and self-regulating mechanism.
Collapse
|
16
|
Lauzier B, Vaillant F, Gélinas R, Bouchard B, Brownsey R, Thorin E, Tardif JC, Des Rosiers C. Ivabradine reduces heart rate while preserving metabolic fluxes and energy status of healthy normoxic working hearts. Am J Physiol Heart Circ Physiol 2011; 300:H845-52. [PMID: 21257916 DOI: 10.1152/ajpheart.01034.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heart rate reduction (HRR) is an important target in the management of patients with chronic stable angina. Most available drugs for HRR, such as β-blockers, have adverse effects, including on cardiac energy substrate metabolism, a well-recognized determinant of cardiac homeostasis. This study aimed at 1) testing whether HRR by ivabradine (IVA) alters substrate metabolism in the healthy normoxic working heart and 2) comparing the effect of IVA with that of the β-blocker metoprolol (METO). This was assessed using our well-established model of ex vivo mouse heart perfusion in the working mode, which enables concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates. Hearts were perfused in the absence (controls; n = 10) or presence of IVA (n = 10, 3 μM) with or without atrial pacing to abolish HRR in the IVA group. IVA significantly reduced HR (35 ± 5%) and increased stroke volume (39 ± 9%) while maintaining similar cardiac output, contractility, power, and efficiency. Effects of IVA on HR and stroke volume were reversed by atrial pacing. At the metabolic level, IVA did not impact on substrate selection to citrate formation, rates of glycolysis, or tissue levels of high-energy phosphates. In contrast, METO, at concentrations up to 40 μM, decreased markedly cardiac function (flow: 25 ± 6%; stroke volume: 30 ± 10%; contractility: 31 ± 9%) as well as glycolysis (2.9-fold) but marginally affected HR. Collectively, these results demonstrate that IVA selectively reduces HR while preserving energy substrate metabolism of normoxic healthy working mouse hearts perfused ex vivo, a model that mimics to some extent the denervated transplanted heart. Our results provide the impetus for testing selective HRR by IVA on cardiac substrate metabolism in pathological models.
Collapse
Affiliation(s)
- Benjamin Lauzier
- Departments of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hauton D. Does long-term metformin treatment increase cardiac lipoprotein lipase? Metabolism 2011; 60:32-42. [PMID: 20153488 PMCID: PMC3004047 DOI: 10.1016/j.metabol.2009.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/18/2022]
Abstract
Acute activation of adenosine monophosphate-activated protein kinase (AMPK) or jumps in cardiac work increased cardiac endothelial lipoprotein lipase (LPL), yet it is unclear whether chronic AMPK activation maintains this elevated LPL. To activate AMPK chronically, metformin at low (300 mg/kg/d) and high dose (600 mg/kg/d) was administered in drinking water for 14 days. Control, metformin-treated, and 5-amino-imidazole-4-carboxamide riboside (AICAR)-treated (0.5 mmol/L) ex vivo hearts were perfused to investigate uptake of triacylglycerol and cardiac LPL activity. For perfused rat hearts, increased uptake of labeled Intralipid and β-oxidation of Intralipid-fatty acid were noted for both AICAR (P < .05) and high-dose metformin (P < .01). Intralipid incorporation into tissue lipids was decreased by AICAR (P < .05) and increased after high-dose metformin (P < .05), the increase manifest as enhanced triacylglycerol deposition (P < .05). Low-dose metformin did not alter lipid uptake or tissue deposition. Both high-dose metformin and AICAR decreased cardiac acetyl-coenzyme A carboxylase activity (P < .01). Heparin-releasable LPL was increased after treatment with AICAR (P < .05) and high-dose metformin (P < .01). Low-dose metformin did not alter cardiac LPL. High-dose metformin doubled immunoreactive AMPK and phospho-AMPK protein (P < .001) and increased phosphorylation of p38-mitogen-activated protein kinase (P < .05). After heparin pretreatment, the rate of recruitment of LPL to the cardiac endothelium was increased by AICAR (P < .05) but not by high-dose metformin. These data suggest that AMPK activation increased cardiac endothelial LPL, yet acute and chronic activation of AMPK may yield increased LPL through differing mechanisms.
Collapse
Affiliation(s)
- David Hauton
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B152TT Birmingham, United Kingdom.
| |
Collapse
|
18
|
Jaswal JS, Lund CR, Keung W, Beker DL, Rebeyka IM, Lopaschuk GD. Isoproterenol stimulates 5'-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts. Am J Physiol Heart Circ Physiol 2010; 299:H1135-45. [PMID: 20656883 DOI: 10.1152/ajpheart.00186.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoproterenol increases phosphorylation of LKB, 5'-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O(2) consumption (in J·g dry wt(-1)·min(-1); 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol·g dry wt(-1)·min(-1); 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol·g dry wt(-1)·min(-1); 253 ± 75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Kewalramani G, Rodrigues B. AMP-activated protein kinase in the heart: role in cardiac glucose and fatty acid metabolism. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Saeedi R, Saran VV, Wu SSY, Kume ES, Paulson K, Chan APK, Parsons HL, Wambolt RB, Dyck JRB, Brownsey RW, Allard MF. AMP-activated protein kinase influences metabolic remodeling in H9c2 cells hypertrophied by arginine vasopressin. Am J Physiol Heart Circ Physiol 2009; 296:H1822-32. [DOI: 10.1152/ajpheart.00396.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells. The H9c2 cell line, derived from the embryonic rat heart, was treated with arginine vasopressin (AVP; 1 μM) to induce a cellular model of hypertrophy. Rates of glycolysis and oxidation of glucose and palmitate were measured in nonhypertrophied and hypertrophied H9c2 cells, and the effects of inhibition of AMPK were determined. AMPK activity was inhibited by 6-[4-(2-piperidin-1- yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrrazolo-[1,5-a]pyrimidine (compound C) or by adenovirus-mediated transfer of dominant negative AMPK. Compared with nonhypertrophied cells, glycolysis was accelerated and palmitate oxidation was reduced with no significant alteration in glucose oxidation in hypertrophied cells, a metabolic profile similar to that of intact hypertrophied hearts. Inhibition of AMPK resulted in the partial reduction of glycolysis in AVP-treated hypertrophied H9c2 cells. Acute exposure of H9c2 cells to AVP also activated AMPK and accelerated glycolysis. These elevated rates of glycolysis were not altered by AMPK inhibition but were blocked by agents that interfere with Ca2+ signaling, including extracellular EGTA, dantrolene, and 2-aminoethoxydiphenyl borate. We conclude that the acceleration of glycolysis in AVP-treated hypertrophied heart muscle cells is partially dependent on AMPK, whereas the acute glycolytic effects of AVP are AMPK independent and at least partially Ca2+ dependent.
Collapse
|
21
|
Hutchinson DS, Summers RJ, Bengtsson T. Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: Potential utility in treatment of diabetes and heart disease. Pharmacol Ther 2008; 119:291-310. [DOI: 10.1016/j.pharmthera.2008.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/25/2022]
|
22
|
Cheng Y, Hauton D. Cold acclimation induces physiological cardiac hypertrophy and increases assimilation of triacylglycerol metabolism through lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:618-26. [PMID: 18722549 PMCID: PMC2568868 DOI: 10.1016/j.bbalip.2008.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 12/24/2022]
Abstract
The contribution of triacylglycerol to energy provision in the hypertrophied heart, mediated through lipoprotein lipase (LPL) is largely unknown and the contribution of very-low-density lipoprotein (VLDL) receptor to control of LPL presentation at the endothelium is unclear. For isolated perfused rat hearts, cold acclimation (CA) induced volume-overload hypertrophy, with decreased developed pressure (P < 0.01), increased end-diastolic volume of the left ventricle (P < 0.001) and a loss of contractile reserve in response to dobutamine challenge (P < 0.01). Oleate utilisation by perfused hearts was unchanged by CA, however uptake of intralipid emulsion increased 3-fold (P < 0.01). CA increased the proportion of lipid deposited in tissue lipids from 10% in euthermic controls to 40% (P < 0.01) although the overall contribution of individual lipid classes was unaffected. Cold acclimation significantly increased heparin-releasable LPL (P < 0.05) and tissue residual LPL (P < 0.01). Western blot analysis indicated preserved expression of proteins coding for SERCA2, muscle-CPT1 and VLDL-receptor following CA, while AMPKα2 and phospho-AMPKα2 were unaffected. These observations indicate that for physiological hypertrophy AMPK phosphorylation does not mediate the enhanced translocation of LPL to cardiac endothelium.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
23
|
Saeedi R, Parsons HL, Wambolt RB, Paulson K, Sharma V, Dyck JRB, Brownsey RW, Allard MF. Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms. Am J Physiol Heart Circ Physiol 2008; 294:H2497-506. [PMID: 18375721 DOI: 10.1152/ajpheart.00873.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The metabolic actions of the antidiabetic agent metformin reportedly occur via the activation of the AMP-activated protein kinase (AMPK) in the heart and other tissues in the presence or absence of changes in cellular energy status. In this study, we tested the hypothesis that metformin has AMPK-independent effects on metabolism in heart muscle. Fatty acid oxidation and glucose utilization (glycolysis and glucose uptake) were measured in isolated working hearts from halothane-anesthetized male Sprague-Dawley rats and in cultured heart-derived H9c2 cells in the absence or in the presence of metformin (2 mM). Fatty acid oxidation and glucose utilization were significantly altered by metformin in hearts and H9c2 cells. AMPK activity was not measurably altered by metformin in either model system, and no impairment of energetic state was observed in the intact hearts. Furthermore, the inhibition of AMPK by 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine (Compound C), a well-recognized pharmacological inhibitor of AMPK, or the overexpression of a dominant-negative form of AMPK failed to prevent the metabolic actions of metformin in H9c2 cells. The exposure of H9c2 cells to inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) or protein kinase C (PKC) partially or completely abrogated metformin-induced alterations in metabolism in these cells, respectively. Thus the metabolic actions of metformin in the heart muscle can occur independent of changes in AMPK activity and may be mediated by p38 MAPK- and PKC-dependent mechanisms.
Collapse
Affiliation(s)
- Ramesh Saeedi
- Department of Pathology and Laboratory Medicine, James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-Saint Paul's Hospital, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu G, Zhang L, Gupta J, Olivecrona G, Olivecrona T. A transcription-dependent mechanism, akin to that in adipose tissue, modulates lipoprotein lipase activity in rat heart. Am J Physiol Endocrinol Metab 2007; 293:E908-15. [PMID: 17595214 DOI: 10.1152/ajpendo.00634.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzyme lipoprotein lipase (LPL) releases fatty acids from lipoprotein triglycerides for use in cell metabolism. LPL activity is rapidly modulated in a tissue-specific manner. Recent studies have shown that in rat adipose tissue this occurs by a shift of extracellular LPL toward an inactive form catalyzed by an LPL-controlling protein whose expression changes in response to the nutritional state. To explore whether a similar mechanism operates in other tissues we injected actinomycin D to block transcription of the putative LPL controlling protein(s). When actinomycin was given to fed rats, heparin-releasable LPL activity increased by 160% in heart and by 150% in a skeletal muscle (soleus) in 6 h. Postheparin LPL activity in blood increased by about 200%. To assess the state of extracellular LPL we subjected the spontaneously released LPL in heart perfusates to chromatography on heparin-agarose, which separates the active and inactive forms of the lipase. The amount of lipase protein released remained relatively constant on changes in the nutritional state and/or blockade of transcription, but the distribution between the active and inactive forms changed. Less of the LPL protein was in the active form in perfusates from hearts from fed compared with fasted rats. When glucose was given to fasted rats the proportion of LPL protein in the active form decreased. Actinomycin D increased the proportion that was active, in accord with the hypothesis that the message for a rapidly turning over LPL-controlling protein was being removed.
Collapse
Affiliation(s)
- Gengshu Wu
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
25
|
Abstract
The heart is capable of utilizing a variety of substrates to produce the necessary ATP for cardiac function. AMP-activated protein kinase (AMPK) has emerged as a key regulator of cellular energy homeostasis and coordinates multiple catabolic and anabolic pathways in the heart. During times of acute metabolic stresses, cardiac AMPK activation seems to be primarily involved in increasing energy-generating pathways to maintain or restore intracellular ATP levels. In acute situations such as mild ischemia or short durations of severe ischemia, activation of cardiac AMPK appears to be necessary for cardiac myocyte function and survival by stimulating ATP generation via increased glycolysis and accelerated fatty acid oxidation. Whereas AMPK activation may be essential for adaptation of cardiac energy metabolism to acute and/or minor metabolic stresses, it is unknown whether AMPK activation becomes maladaptive in certain chronic disease states and/or extreme energetic stresses. However, alterations in cardiac AMPK activity are associated with a number of cardiovascular-related diseases such as pathological cardiac hypertrophy, myocardial ischemia, glycogen storage cardiomyopathy, and Wolff-Parkinson-White syndrome, suggesting the possibility of a maladaptive role. Although the precise role AMPK plays in the diseased heart is still in question, it is clear that AMPK is a major regulator of cardiac energy metabolism. The consequences of alterations in AMPK activity and subsequent cardiac energy metabolism in the healthy and the diseased heart will be discussed.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
26
|
Du JH, Xu N, Song Y, Xu M, Lu ZZ, Han C, Zhang YY. AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Biochem Biophys Res Commun 2005; 337:1139-44. [PMID: 16229818 DOI: 10.1016/j.bbrc.2005.09.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/26/2005] [Indexed: 12/25/2022]
Abstract
Though known as a sensor of energy balance, AMP-activated protein kinase (AMPK) was recently shown to limit damage and apoptotic activity and contribute to the late preconditioning in heart. Interleukin-6 was also reported to involve in anti-apoptosis and cardio-protection in myocardium. Interestingly, both AMPK activity and IL-6 level were increased in response to ischemia, hypertrophy and oxidative stress. To determine whether AMPK activation will promote IL-6 production, cardiac fibroblasts (CFs) from mice were incubated with AMPK activator, 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR). The results demonstrated that AICAR time and dose-dependently stimulated IL-6 production by ELISA and immunofluorescence. Pretreatment with p38 mitogen-activated protein kinase (MAPK) inhibitor blocked AICAR-induced IL-6 production; furthermore, AICAR-activated p38 MAPK phosphorylation by Western blot. To confirm that the increase in IL-6 production is ascribed to AMPK activation, we used another known AMPK activator, metformin. It also dose-dependently potentiated IL-6 production in CFs, and this potentiation could be reversed by p38 MAPK inhibitor. In conclusion, AMPK activation promoted IL-6 production in CFs via p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Jian-Hai Du
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|