1
|
Reciprocal regulation of β 2-adrenoceptor-activated cAMP response-element binding protein signalling by arrestin2 and arrestin3. Cell Signal 2017; 38:182-191. [PMID: 28733084 DOI: 10.1016/j.cellsig.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Activation of Gs coupled receptors (e.g. β2-adrenoreceptor (β2AR)) expressed within the uterine muscle layer (myometrium), promotes intracellular cAMP generation, inducing muscle relaxation through short-term inhibition of contractile proteins, and longer-term modulation of cellular phenotype to promote quiescence. In the myometrium cAMP-driven modulation of cell phenotype is facilitated by CREB activity, however despite the importance of CREB signalling in the promotion of myometrial quiescence during pregnancy, little is currently known regarding the molecular mechanisms involved. Thus, we have characterised β-adrenoceptor-stimulated CREB signalling in the immortalised ULTR human myometrial cell line. The non-selective β-adrenoceptor agonist isoprenaline induced time- and concentration-dependent CREB phosphorylation, which was abolished by the β2AR selective antagonist ICI118,551. β2AR-stimulated CREB phosphorylation was mediated through a short-term PKA-dependent phase, and longer-term Src/p38 MAPK-dependent/PKA-independent phase. Since in model cells, arrestin2 can facilitate β2AR-mediated Src/p38 recruitment, we examined whether CREB signalling was activated through a similar process in myometrial cells. Depletion of arrestin2 attenuated p38 phosphorylation, whilst arrestin3 depletion enhanced and prolonged isoprenaline-stimulated p38 signals, which was reversed following inhibition of Src. Knockdown of arrestin2 led to enhanced short-term (up to 10min), and attenuated longer-term (>10min) isoprenaline-stimulated CREB phosphorylation. Contrastingly, removal of arrestin3 enhanced and prolonged isoprenaline-stimulated CREB phosphorylation, whilst depletion of both arrestins abolished CREB signals at time points >5min. In summary, we have delineated the molecular mechanisms coupling β2AR activity to CREB signalling in ULTR myometrial cells, revealing a biphasic activation process encompassing short-term PKA-dependent, and prolonged Src/arrestin2/p38-dependent components. Indeed, our data highlight a novel arrestin-mediated modulation of CREB signalling, suggesting a reciprocal relationship between arrestin2 and arrestin3, wherein recruitment of arrestin3 restricts the ability of β2AR to activate prolonged CREB phosphorylation by precluding recruitment of an arrestin2/Src/p38 complex.
Collapse
|
2
|
Xu C, You X, Liu W, Sun Q, Ding X, Huang Y, Ni X. Prostaglandin F2α regulates the expression of uterine activation proteins via multiple signalling pathways. Reproduction 2015; 149:139-146. [PMID: 25342173 DOI: 10.1530/rep-14-0479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.
Collapse
Affiliation(s)
- Chen Xu
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xingji You
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Weina Liu
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Qianqian Sun
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xiaoying Ding
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Ying Huang
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xin Ni
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| |
Collapse
|
3
|
Brighton PJ, Rana S, Challiss RJ, Konje JC, Willets JM. Arrestins differentially regulate histamine- and oxytocin-evoked phospholipase C and mitogen-activated protein kinase signalling in myometrial cells. Br J Pharmacol 2011; 162:1603-17. [PMID: 21175586 DOI: 10.1111/j.1476-5381.2010.01173.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The uterotonins oxytocin and histamine, mediate contractile signals through specific G protein-coupled receptors, a process which is tightly controlled during gestation to prevent preterm labour. We previously identified G protein-coupled receptor kinase (GRK)2 and GRK6 as respective cardinal negative regulators of histamine H(1) and oxytocin receptor signalling. GRK-mediated phosphorylation promotes arrestin recruitment, not only desensitizing receptors but activating an increasing number of diverse signalling pathways. Here we investigate potential roles that arrestins play in the regulation of myometrial oxytocin/histamine H(1) receptor signalling. EXPERIMENTAL APPROACH Endogenous arrestins2 and 3 were specifically depleted using RNA-interference in a human myometrial cell line and the consequences of this for G protein-coupled receptor-mediated signalling were assessed using Ca(2+) /inositol 1,4,5-trisphophate imaging and standard mitogen-activated protein kinase (MAPK) assays. KEY RESULTS Depletion of arrestin3, but not arrestin2 enhanced and prolonged H(1) receptor-stimulated Ca(2+) responses, whilst depletion of either arrestin increased oxytocin receptor responses. Arrestin3 depletion decreased H(1) receptor desensitization, whilst removal of either arrestin isoform was equally effective in preventing oxytocin receptor desensitization. Following arrestin3 depletion oxytocin-induced phospho-extracellular signal-regulated kinase1/2 signals were diminished and histamine-stimulated signals virtually absent, whereas depletion of arrestin2 augmented extracellular signal-regulated kinase1/2 responses to each agonist. Conversely, depletion of arrestin3 enhanced p38 signals to each agonist, whilst arrestin2 suppression increased oxytocin-, but not histamine-induced p38 MAPK responses. CONCLUSIONS AND IMPLICATIONS Arrestin proteins are key regulators of H(1) and oxytocin receptor desensitization, and play integral roles mediating uterotonin-stimulated MAPK-signalling. These data provide insights into the in situ regulation of these receptor subtypes and may inform pathophysiological functioning in preterm labour.
Collapse
Affiliation(s)
- Paul J Brighton
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | |
Collapse
|
4
|
Willets JM, Brighton PJ, Mistry R, Morris GE, Konje JC, Challiss RAJ. Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol Endocrinol 2009; 23:1272-80. [PMID: 19423652 PMCID: PMC5419184 DOI: 10.1210/me.2009-0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022] Open
Abstract
Oxytocin plays an important role in the progression, timing, and modulation of uterine contraction during labor and is widely used as an uterotonic agent. We investigated the mechanisms regulating oxytocin receptor (OTR) signaling in human primary myometrial smooth muscle cells and the ULTR cell-line. Oxytocin produced concentration-dependent increases in both total [(3)H]inositol phosphate accumulation and intracellular Ca(2+) concentration ([Ca(2+)](i)); however, responses were greater and more reproducible in the ULTR cell line. Assessment of phospholipase C activity in single cells revealed that the OTR desensitizes rapidly (within 5 min) in the presence of oxytocin (100 nm). To characterize OTR desensitization further, cells were stimulated with a maximally effective concentration of oxytocin (100 nm, 30 sec) followed by a variable washout period and a second identical application of oxytocin. This brief exposure to oxytocin caused a marked decrease (>70%) in OTR responsiveness to rechallenge and was fully reversed by increasing the time period between agonist challenges. To assess involvement of G protein-coupled receptor kinases (GRKs) in OTR desensitization, cells were transfected with small interfering RNAs to cause specific > or =75% knockdown of GRKs 2, 3, 5, or 6. In both primary myometrial and ULTR cells, knockdown of GRK6 largely prevented oxytocin-induced OTR desensitization; in contrast, selective depletion of GRKs 2, 3, or 5 was without effect. These data indicate that GRK6 recruitment is a cardinal effector of OTR responsiveness and provide mechanistic insight into the likely in vivo regulation of OTR signaling in uterine smooth muscle.
Collapse
Affiliation(s)
- Jonathon M Willets
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | | | |
Collapse
|
5
|
Brighton PJ, McDonald J, Taylor AH, Challiss RAJ, Lambert DG, Konje JC, Willets JM. Characterization of anandamide-stimulated cannabinoid receptor signaling in human ULTR myometrial smooth muscle cells. Mol Endocrinol 2009; 23:1415-27. [PMID: 19477951 DOI: 10.1210/me.2009-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence highlights the importance of the endocannabinoid anandamide (AEA) as a key mediator in reproductive physiology. Current data suggest potential roles for AEA in gametogenesis, fertilization, and parturition. AEA exerts its actions through two G protein-coupled receptors, termed cannabinoid receptor 1 (CB1), and 2 (CB2), and the ligand-gated transient receptor potential vanilloid receptor type 1 (TRPV1) ion channel. At present, the cellular mechanism(s) and consequences of AEA signaling in reproductive tissues, especially the myometrium, are poorly understood. Here, we examine the expression of CB1, CB2, and TRPV1 in the human myometrial smooth muscle cell-line (ULTR) and characterize intracellular signaling after stimulation with AEA. Radioligand binding analysis revealed a total CB receptor expression of 76 +/- 24 fmol/mg protein, with both quantitative PCR and competition binding studies indicating a negligible CB2 component. AEA caused Galpha(i/o)-dependent inhibition of adenylate cyclase to reduce intracellular cAMP levels. In addition, AEA caused a 2.5- to 3.5-fold increase in ERK activation, which was ablated by inhibition of Galpha(i/o), phosphoinositide-3-kinase and Src-kinase activities, but not by inhibition of Ca(2+)/calmodulin-dependent protein kinase or protein kinase C activities. TRPV1 channel activation with capsaicin failed to activate ERK. Consistent with these findings, the selective agonists, arachidonyl-2-chloroethylamide (CB1) and L759656 (CB2), and selective antagonists AM251 (CB1) and JTE907 (CB2), provided pharmacological evidence that the ERK signaling pathway is activated through endogenously expressed CB1. These findings provide an insight into myometrial AEA signaling, highlighting a potential role for endocannabinoids in the regulation of gene expression in myometrial smooth muscle cells.
Collapse
Affiliation(s)
- Paul J Brighton
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Willets JM, Taylor AH, Shaw H, Konje JC, Challiss RAJ. Selective regulation of H1 histamine receptor signaling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol Endocrinol 2008; 22:1893-907. [PMID: 18511496 DOI: 10.1210/me.2007-0463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Histamine stimulates uterine contraction; however, little is known regarding the mechanism or regulation of uterine histamine receptor signaling. Here we investigated the regulation of Galpha(q/11)-coupled histamine receptor signaling in human myometrial smooth muscle cells using the inositol 1,4,5-trisphosphate biosensor pleckstrin homology domain of phospholipase-delta1 tagged to enhanced green fluorescent protein and the Ca(2+)-sensitive dye Fluo-4. Histamine addition caused concentration-dependent increases in inositol 1,4,5-trisphosphate and [Ca(2+)](i) in the ULTR human uterine smooth muscle cell line and primary human myometrial cells. These effects were completely inhibited by the H(1) histamine receptor antagonist, diphenhydramine, and were unaffected by the H(2) histamine receptor antagonist, cimetidine. ULTR and primary myometrial cells were transfected with either dominant-negative G protein-coupled receptor kinases (GRKs) or small interfering RNAs targeting specific GRKs to assess the roles of this protein kinase family in H(1) histamine receptor desensitization. Dominant-negative GRK2, but not GRK5 or GRK6, prevented H(1) histamine receptor desensitization. Similarly, transfection with short interfering RNAs (that each caused >70% depletion of the targeted GRK) for GRK2, but not GRK3 or GRK6, also prevented H(1) histamine receptor desensitization. Our data suggest that histamine stimulates phospholipase C-signaling in myometrial smooth muscle cells through H(1) histamine receptors and that GRK2 recruitment is a key mechanism in the regulation of H(1) histamine receptor signaling in human uterine smooth muscle. These data provide insights into the in situ regulation of this receptor subtype and may inform pathophysiological functioning in preterm labor and other conditions involving uterine smooth muscle dysregulation.
Collapse
Affiliation(s)
- Jonathon M Willets
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | |
Collapse
|