1
|
Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines 2022; 11:biomedicines11010017. [PMID: 36672525 PMCID: PMC9856001 DOI: 10.3390/biomedicines11010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury is a process associated with cardiologic interventions, such as percutaneous coronary angioplasty after an acute myocardial infarction. Blood flow restoration causes a quick burst of reactive oxygen species (ROS), which generates multiple organelle damage, leading to the activation of cell death pathways. Therefore, the intervention contributes to a greater necrotic zone, thus increasing the risk of cardiovascular complications. A major cardiovascular ROS source in this setting is the activation of multiple NADPH oxidases, which could result via the occupancy of type 1 angiotensin II receptors (AT1R); hence, the renin angiotensin system (RAS) is associated with the generation of ROS during reperfusion. In addition, ROS can promote the expression of NF-κΒ, a proinflammatory transcription factor. Recent studies have described an intracellular RAS pathway that is associated with increased intramitochondrial ROS through the action of isoform NOX4 of NADPH oxidase, thereby contributing to mitochondrial dysfunction. On the other hand, the angiotensin II/ angiotensin type 2 receptor (Ang II/AT2R) axis exerts its effects by counter-modulating the action of AT1R, by activating endothelial nitric oxide synthase (eNOS) and stimulating cardioprotective pathways such as akt. The aim of this review is to discuss the possible use of AT1R blockers to hamper both the Ang II/AT1R axis and the associated ROS burst. Moreover; we suggest that AT1R antagonist drugs should act synergistically with other cardioprotective agents, such as ascorbic acid, N-acetylcysteine and deferoxamine, leading to an enhanced reduction in the reperfusion injury. This therapy is currently being tested in our laboratory and has shown promising outcomes in experimental studies.
Collapse
|
2
|
Yi W, Chen F, Zhang H, Tang P, Yuan M, Wen J, Wang S, Cai Z. Role of angiotensin II in aging. Front Aging Neurosci 2022; 14:1002138. [PMID: 36533172 PMCID: PMC9755866 DOI: 10.3389/fnagi.2022.1002138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Aging is an inevitable progressive decline in physiological organ function that increases the chance of disease and death. The renin-angiotensin system (RAS) is involved in the regulation of vasoconstriction, fluid homeostasis, cell growth, fibrosis, inflammation, and oxidative stress. In recent years, unprecedented advancement has been made in the RAS study, particularly with the observation that angiotensin II (Ang II), the central product of the RAS, plays a significant role in aging and chronic disease burden with aging. Binding to its receptors (Ang II type 1 receptor - AT1R in particular), Ang II acts as a mediator in the aging process by increasing free radical production and, consequently, mitochondrial dysfunction and telomere attrition. In this review, we examine the physiological function of the RAS and reactive oxygen species (ROS) sources in detail, highlighting how Ang II amplifies or drives mitochondrial dysfunction and telomere attrition underlying each hallmark of aging and contributes to the development of aging and age-linked diseases. Accordingly, the Ang II/AT1R pathway opens a new preventive and therapeutic direction for delaying aging and reducing the incidence of age-related diseases in the future.
Collapse
Affiliation(s)
- Wenmin Yi
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Fei Chen
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Huiji Zhang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Peng Tang
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengyuan Wang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| |
Collapse
|
3
|
Golchert J, Staar D, Bennewitz J, Hartmann M, Hoffmann N, Ameling S, Völker U, Peters J, Wanka H. Overexpression of Renin-B Induces Warburg-like Effects That Are Associated with Increased AKT/mTOR Signaling. Cells 2022; 11:cells11091459. [PMID: 35563765 PMCID: PMC9103744 DOI: 10.3390/cells11091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The classical secretory renin-a is known to be involved in angiotensin generation, thereby regulating not only blood pressure, but also promoting oxidative stress as well as apoptotic and necrotic cell death. In contrast, another cytosolic renin isoform named renin-b has been described, exerting protective effects under ischemia-related conditions in H9c2 cardiomyoblasts. Using microarray-based transcriptome analyses, we aimed to identify the signaling pathways involved in mediating cardioprotection in H9c2 cells overexpressing renin-b. By transcriptome profiling, we identified increased gene expression of several genes encoding glycolytic enzymes and glucose transporters, while the transcript levels of TCA-cycle enzymes were decreased. Complementing data from metabolic analyses revealed enhanced glucose consumption and lactate accumulation due to renin-b overexpression. Renin-b overexpression further stimulated AKT/mTOR signaling, where numerous genes involved in this pathway showed altered transcript levels. For AKT, we also detected enhanced phosphorylation levels by means of Western blotting, suggesting an activation of this kinase. Moreover, analysis of the ROS levels identified an increase in ROS accumulation in renin-b-overexpressing cells. Altogether, our data demonstrate that renin-b overexpression induces the metabolic remodeling of H9c2 cells similar to that seen under oxygen deprivation. This metabolic phenotype exerting so-called aerobic glycolysis is also known as the Warburg effect.
Collapse
Affiliation(s)
- Janine Golchert
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Doreen Staar
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Jonathan Bennewitz
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Miriam Hartmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| | - Sabine Ameling
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (S.A.); (U.V.)
- Partner Site Greifswald, DZHK (German Center for Cardiovascular Research), 17475 Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
- Correspondence:
| | - Heike Wanka
- Institute of Physiology, University Medicine Greifswald, 17475 Greifswald, Germany; (J.G.); (D.S.); (J.B.); (M.H.); (N.H.); (H.W.)
| |
Collapse
|
4
|
Laghlam D, Jozwiak M, Nguyen LS. Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021; 10:cells10071767. [PMID: 34359936 PMCID: PMC8303450 DOI: 10.3390/cells10071767] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The renin–angiotensin system (RAS) has long been described in the field of cardiovascular physiology as the main player in blood pressure homeostasis. However, other effects have since been described, and include proliferation, fibrosis, and inflammation. To illustrate the immunomodulatory properties of the RAS, we chose three distinct fields in which RAS may play a critical role and be the subject of specific treatments. In oncology, RAS hyperactivation has been associated with tumor migration, survival, cell proliferation, and angiogenesis; preliminary data showed promise of the benefit of RAS blockers in patients treated for certain types of cancer. In intensive care medicine, vasoplegic shock has been associated with severe macro- and microcirculatory imbalance. A relative insufficiency in angiotensin II (AngII) was associated to lethal outcomes and synthetic AngII has been suggested as a specific treatment in these cases. Finally, in solid organ transplantation, both AngI and AngII have been associated with increased rejection events, with a regional specificity in the RAS activity. These elements emphasize the complexity of the direct and indirect interactions of RAS with immunomodulatory pathways and warrant further research in the field.
Collapse
|
5
|
Overexpression of Transcripts Coding for Renin-b but Not for Renin-a Reduce Oxidative Stress and Increase Cardiomyoblast Survival under Starvation Conditions. Cells 2021; 10:cells10051204. [PMID: 34069146 PMCID: PMC8156538 DOI: 10.3390/cells10051204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases.
Collapse
|
6
|
Angiotensin dependent and angiotensin independent protective effects of renin-b in H9c2 cells after anoxia. Sci Rep 2020; 10:19689. [PMID: 33184370 PMCID: PMC7661495 DOI: 10.1038/s41598-020-76712-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
The renin-angiotensin system is known to regulate blood pressure as well as water- and electrolyte balance. An activated RAS is involved in the development of hypertension and hypertension-related organ damage. Thus, inhibitors of the RAS are protective and markedly increasing the life span of patients. In contrast, renin transcripts have been discovered encoding a cytoplasmatic renin isoform, termed renin-b, which is not harmful but may be even protective. Here we demonstrate that depletion of renin-b encoding transcripts by small interference RNA decreased ATP levels and increased basal necrosis as well as apoptosis rates. Furthermore, renin-b depletion potentiated the anoxia-induced increase of necrosis rates. Vice versa, overexpression of renin-b prevented the anoxia-induced increase of caspase-mediated apoptosis rates. Besides, cells overexpressing renin-b exhibited even reduced mitochondrial mediated apoptosis rates under anoxia, when compared with normoxic conditions, as indicated by Annexin V labeling. However, whereas the protective effect of renin-b on caspase-mediated apoptosis was completely blocked by the renin inhibitor CH732, the effect on mitochondrial-mediated apoptosis was not affected by CH732 at all. From these data we conclude that renin-b overexpression mediates cardioprotective effects under anoxia with respect to mitochondrial induced apoptosis angiotensin-independently, but with respect to caspase induced apoptosis likely in an angiotensin-dependent manner.
Collapse
|
7
|
Li XC, Zhou X, Zhuo JL. Evidence for a Physiological Mitochondrial Angiotensin II System in the Kidney Proximal Tubules: Novel Roles of Mitochondrial Ang II/AT 1a/O 2- and Ang II/AT 2/NO Signaling. Hypertension 2020; 76:121-132. [PMID: 32475319 DOI: 10.1161/hypertensionaha.119.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.
Collapse
Affiliation(s)
- Xiao Chun Li
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Xinchun Zhou
- Department of Pathology (X.Z.), University of Mississippi Medical Center, Jackson
| | - Jia Long Zhuo
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
8
|
Sapouckey SA, Morselli LL, Deng G, Patil CN, Balapattabi K, Oliveira V, Claflin KE, Gomez J, Pearson NA, Potthoff MJ, Gibson-Corley KN, Sigmund CD, Grobe JL. Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or agouti-related peptide. Am J Physiol Regul Integr Comp Physiol 2020; 318:R855-R869. [PMID: 32186897 DOI: 10.1152/ajpregu.00297.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Lisa L Morselli
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole A Pearson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa.,Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Non-secretory renin reduces oxidative stress and increases cardiomyoblast survival during glucose and oxygen deprivation. Sci Rep 2020; 10:2329. [PMID: 32047214 PMCID: PMC7012910 DOI: 10.1038/s41598-020-59216-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Although the renin-angiotensin system usually promotes oxidative stress and cell death, renin transcripts have been discovered, whose transcription product may be cardioprotective. These transcripts encode a non-secretory renin isoform that is localized in the cytosol and within mitochondria. Here we tested the hypotheses that cytosolic renin [ren(2-9)] expression promotes cell survival under hypoxia and glucose depletion by preserving the mitochondrial membrane potential (∆Ψm) and mitigating the accumulation of ROS. To simulate ischemic insults, we exposed H9c2 cells to glucose deprivation, anoxia or to combined oxygen-glucose deprivation (OGD) for 24 hours and determined renin expression. Furthermore, H9c2 cells transfected with the empty pIRES vector (pIRES cells) or ren(2-9) cDNA-containing vector [ren(2-9) cells] were analyzed for cell death, ∆Ψm, ATP levels, accumulation of ROS, and cytosolic Ca2+ content. In pIRES cells, expression of ren(1A-9) was stimulated under all three ischemia-related conditions. After OGD, the cells lost their ∆Ψm and exhibited enhanced ROS accumulation, increased cytosolic Ca2+ levels, decreased ATP levels as well as increased cell death. In contrast, ren(2-9) cells were markedly protected from these effects. Ren(2-9) appears to represent a protective response to OGD by reducing ROS generation and preserving mitochondrial functions. Therefore, it is a promising new target for the prevention of ischemia-induced myocardial damage.
Collapse
|
10
|
Micakovic T, Banczyk WZ, Clark E, Kränzlin B, Peters J, Hoffmann SC. Isolation of Pure Mitochondria from Rat Kidneys and Western Blot of Mitochondrial Respiratory Chain Complexes. Bio Protoc 2019; 9:e3379. [PMID: 33654875 PMCID: PMC7853962 DOI: 10.21769/bioprotoc.3379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/02/2022] Open
Abstract
Cardiac, neuronal and renal tubular epithelial cells are the most metabolically active cells in the body. Their fate depends largely on their mitochondria as the primary energy generating system which participates in the control of apoptosis, cell cycle and metabolism. Thus, mitochondrial dysfunction is a hallmark of many chronic diseases including diabetic nephropathy. A drop in mitochondrial bioenergetics efficiency is often associated with altered expression of respiratory chain complexes. Moreover, recent studies demonstrate that cellular proteins can shuttle to mitochondria and modify their function directly. Here we illustrate two mitochondria isolation protocols; one is recommended if the purity of the mitochondrial fraction is a priority such as if the mitochondrial localization of a protein has to be validated, the other if a high yield of intact functional mitochondria is required for functional studies and quantitative Western blotting. Next, we provide a detailed protocol for Western blotting of isolated mitochondria and renal cortex either to prove the purity of isolated fractions or to quantify complexes of the mitochondrial respiratory chain. We used this approach to identify classically cell membrane bound angiotensin II receptors in mitochondria and to study the effect of these receptors on mitochondrial function in early stages of diabetic nephropathy.
Collapse
Affiliation(s)
- Tamara Micakovic
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Wiktoria Z. Banczyk
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Euan Clark
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Bettina Kränzlin
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine of Greifswald, Germany
| | | |
Collapse
|
11
|
Escobales N, Nuñez RE, Javadov S. Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 2019; 316:H1426-H1438. [PMID: 30978131 PMCID: PMC6620675 DOI: 10.1152/ajpheart.00772.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
A growing body of data provides strong evidence that intracellular angiotensin II (ANG II) plays an important role in mammalian cell function and is involved in the pathogenesis of human diseases such as hypertension, diabetes, inflammation, fibrosis, arrhythmias, and kidney disease, among others. Recent studies also suggest that intracellular ANG II exerts protective effects in cells during high extracellular levels of the hormone or during chronic stimulation of the local tissue renin-angiotensin system (RAS). Notably, the intracellular RAS (iRAS) described in neurons, fibroblasts, renal cells, and cardiomyocytes provided new insights into regulatory mechanisms mediated by intracellular ANG II type 1 (AT1Rs) and 2 (AT2Rs) receptors, particularly, in mitochondria and nucleus. For instance, ANG II through nuclear AT1Rs promotes protective mechanisms by stimulating the AT2R signaling cascade, which involves mitochondrial AT2Rs and Mas receptors. The stimulation of nuclear ANG II receptors enhances mitochondrial biogenesis through peroxisome proliferator-activated receptor-γ coactivator-1α and increases sirtuins activity, thus protecting the cell against oxidative stress. Recent studies in ANG II-induced preconditioning suggest that plasma membrane AT2R stimulation exerts protective effects against cardiac ischemia-reperfusion by modulating mitochondrial AT1R and AT2R signaling. These studies indicate that iRAS promotes the protection of cells through nuclear AT1R signaling, which, in turn, promotes AT2R-dependent processes in mitochondria. Thus, despite abundant data on the deleterious effects of intracellular ANG II, a growing body of studies also supports a protective role for iRAS that could be of relevance to developing new therapeutic strategies. This review summarizes and discusses previous studies on the role of iRAS, particularly emphasizing the protective and counterbalancing actions of iRAS, mitochondrial ANG II receptors, and their implications for organ protection.
Collapse
Affiliation(s)
- Nelson Escobales
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Rebeca E Nuñez
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine , San Juan, Puerto Rico
| |
Collapse
|
12
|
Wanka H, Lutze P, Staar D, Grunow B, Peters BS, Peters J. An alternative renin isoform is cardioprotective by modulating mitochondrial metabolism. J Cell Mol Med 2018; 22:5991-6001. [PMID: 30247805 PMCID: PMC6237583 DOI: 10.1111/jcmm.13872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023] Open
Abstract
The renin‐angiotensin system promotes oxidative stress, apoptosis, necrosis, fibrosis, and thus heart failure. Secretory renin plays a central role in these processes, initiating the generation of angiotensins. Nevertheless, alternative renin transcripts exist, which code for a cytosolically localized renin isoform (cyto‐renin) that is cardioprotective. We tested the hypothesis that the protective effects are associated with a beneficial switch of metabolic and mitochondrial functions. To assess H9c2 cell mitochondrial parameters, we used the Seahorse XF analyser. Cardiac H9c2 cells overexpressing cyto‐renin exhibited enhanced nonmitochondrial oxygen consumption, lactate accumulation, and LDH activity, reflecting a switch to more aerobic glycolysis known as Warburg effect. Additionally, mitochondrial spare capacity and cell respiratory control ratio were enhanced, indicating an increased potential to tolerate stress conditions. Renin knockdown induced opposite effects on mitochondrial functions without influencing metabolic parameters. Thus, the protective effects of cyto‐renin are associated with an altered bioenergetic profile and an enhanced stress tolerance, which are favourable under ischaemic conditions. Therefore, cyto‐renin is a promising new target for the prevention of ischaemia‐induced myocardial damage.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Bianka Grunow
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Barbara S Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| |
Collapse
|
13
|
Koizumi M, Niimura F, Fukagawa M, Matsusaka T. Adipocytes do not significantly contribute to plasma angiotensinogen. J Renin Angiotensin Aldosterone Syst 2018; 17:1470320316672348. [PMID: 28952396 PMCID: PMC5843855 DOI: 10.1177/1470320316672348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently, it has been reported that 25% of plasma angiotensinogen (Agt) is derived from fat. Meanwhile, liver-specific Agt knockout (KO) mice have markedly low plasma Agt, which may be due to reduced fat mass. To study the contribution of the fat to plasma Agt, we tested whether increasing fat mass can elevate plasma Agt and blood pressure in liver-Agt KO mice. Epididymal fat mass in liver-Agt KO mice fed a high-fat diet (HFD) was 4.1-fold larger than that in liver-Agt KO mice on a normal-fat diet (NFD). The liver-Agt KO mice on NFD were hypotensive with low levels of plasma Agt (on average, 0.11 vs 2.38 μg/ml). HFD slightly increased plasma Agt (0.17 μg/ml) without increase in blood pressure. To further increase fat mass, liver-Agt KO mice were fed HFD and simultaneously supplemented with low-dose angiotensin II and compared with control mice. Fat mass was comparable between the two groups. However, liver-Agt KO mice had uniformly low plasma Agt (0.09 vs 2.07 μg/ml) and systolic blood pressure (78±12 vs 111±6 mm Hg). In conclusion, adipocyte-derived Agt has essentially no contribution to the plasma concentration and no impact on blood pressure compared to liver-derived Agt.
Collapse
Affiliation(s)
- Masahiro Koizumi
- 1 Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Fumio Niimura
- 2 Department of Pediatrics, Tokai University School of Medicine, Japan
| | - Masafumi Fukagawa
- 1 Department of Internal Medicine, Tokai University School of Medicine, Japan
| | - Taiji Matsusaka
- 3 Institute of Medical Sciences, Tokai University, Japan.,4 Department of Molecular Sciences, Tokai University School of Medicine, Japan
| |
Collapse
|
14
|
Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018; 2018:3614303. [PMID: 29849615 PMCID: PMC5904808 DOI: 10.1155/2018/3614303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject to the I/R process.
Collapse
Affiliation(s)
- Simón Quetzalcóatl Rodríguez-Lara
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Leonel García-Benavides
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| |
Collapse
|
15
|
Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96:1327-84. [DOI: 10.1152/physrev.00026.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the 60 years that have passed since the discovery of the mineralocorticoid hormone aldosterone, much has been learned about its synthesis (both adrenal and extra-adrenal), regulation (by renin-angiotensin II, potassium, adrenocorticotrophin, and other factors), and effects (on both epithelial and nonepithelial tissues). Once thought to be rare, primary aldosteronism (PA, in which aldosterone secretion by the adrenal is excessive and autonomous of its principal regulator, angiotensin II) is now known to be the most common specifically treatable and potentially curable form of hypertension, with most patients lacking the clinical feature of hypokalemia, the presence of which was previously considered to be necessary to warrant further efforts towards confirming a diagnosis of PA. This, and the appreciation that aldosterone excess leads to adverse cardiovascular, renal, central nervous, and psychological effects, that are at least partly independent of its effects on blood pressure, have had a profound influence on raising clinical and research interest in PA. Such research on patients with PA has, in turn, furthered knowledge regarding aldosterone synthesis, regulation, and effects. This review summarizes current progress in our understanding of the physiology of aldosterone, and towards defining the causes (including genetic bases), epidemiology, outcomes, and clinical approaches to diagnostic workup (including screening, diagnostic confirmation, and subtype differentiation) and treatment of PA.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| | - Richard D. Gordon
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Wilson BA, Nautiyal M, Gwathmey TM, Rose JC, Chappell MC. Evidence for a mitochondrial angiotensin-(1-7) system in the kidney. Am J Physiol Renal Physiol 2016; 310:F637-F645. [PMID: 26697984 PMCID: PMC4824145 DOI: 10.1152/ajprenal.00479.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
Evidence for an intracellular renin-angiotensin system (RAS) in various cell organelles now includes the endoplasmic reticulum, nucleus, and mitochondria (Mito). Indeed, angiotensin (ANG) AT1 and AT2 receptor subtypes were functionally linked to Mito respiration and nitric oxide production, respectively, in previous studies. We undertook a biochemical analysis of the Mito RAS from male and female sheep kidney cortex. Mito were isolated by differential centrifugation followed by a discontinuous Percoll gradient and were coenriched in Mito membrane markers VDAC and ATP synthase, but not β-actin or cathepsin B. Two distinct renin antibodies identified a 37-kDa protein band in Mito; angiotensinogen (Aogen) conversion was abolished by the inhibitor aliskiren. Mito Aogen was detected by an Aogen antibody to an internal sequence of the protein, but not with an antibody directed against the ANG I N terminus. ANG peptides were quantified by three direct RIAs; mitochondrial ANG II and ANG-(1-7) contents were higher compared with ANG I (23 ± 8 and 58 ± 17 vs. 2 ± 1 fmol/mg protein; P < 0.01, n = 3). 125I-ANG I metabolism primarily revealed the formation of 125I-ANG-(1-7) in Mito that reflects the endopeptidases neprilysin and thimet oligopeptidase. Last, immunoblot studies utilizing the ANG-(1-7)/Mas receptor antibody revealed the protein in isolated Mito from sheep renal cortex. Collectively, the current data demonstrate that Mito actively metabolize the RAS precursor protein Aogen, suggesting that ANG-(1-7) may be generated within Mito to establish an intramitochondrial RAS tone and contribute to renal mitochondrial function.
Collapse
Affiliation(s)
- Bryan A Wilson
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Manisha Nautiyal
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida, Gainesville, Florida
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
17
|
Dhamrait SS, Maubaret C, Pedersen-Bjergaard U, Brull DJ, Gohlke P, Payne JR, World M, Thorsteinsson B, Humphries SE, Montgomery HE. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. ACTA ACUST UNITED AC 2015; 1:70-81. [PMID: 27347560 PMCID: PMC4915277 DOI: 10.1002/icl3.1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Collapse
Affiliation(s)
- Sukhbir S Dhamrait
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology Western Sussex Hospitals NHS Trust West Sussex UK
| | | | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - David J Brull
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology The Whittington Hospital NHS Trust London UK
| | - Peter Gohlke
- Institute of Experimental and Clinical Pharmacology University Hospital of Schleswig-Holstein Kiel Germany
| | - John R Payne
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Scottish National Advanced Heart Failure Service Golden Jubilee National Hospital Clydebank UK
| | - Michael World
- Royal Centre for Defence Medicine Queen Elizabeth Hospital Birmingham UK
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK
| | - Hugh E Montgomery
- UCL and National Centre for Sport, Exercise & Health University College London London UK; UCL Institute for Human Health and Performance University College London London UK
| |
Collapse
|
18
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
19
|
Corrêa TD, Takala J, Jakob SM. Angiotensin II in septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:98. [PMID: 25886853 PMCID: PMC4360936 DOI: 10.1186/s13054-015-0802-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Thiago D Corrêa
- Hospital Israelita Albert Einstein, Intensive Care Unit, São Paulo, Brazil.
| | - Jukka Takala
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, Bern, Switzerland. .,University of Bern, Bern, Switzerland.
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, Bern, Switzerland. .,University of Bern, Bern, Switzerland.
| |
Collapse
|
20
|
Astin R, Bentham R, Djafarzadeh S, Horscroft JA, Kuc RE, Leung PS, Skipworth JRA, Vicencio JM, Davenport AP, Murray AJ, Takala J, Jakob SM, Montgomery H, Szabadkai G. No evidence for a local renin-angiotensin system in liver mitochondria. Sci Rep 2013; 3:2467. [PMID: 23959064 PMCID: PMC3747509 DOI: 10.1038/srep02467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023] Open
Abstract
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.
Collapse
Affiliation(s)
- Ronan Astin
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Robert Bentham
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Center of Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Siamak Djafarzadeh
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - James A. Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Rhoda E. Kuc
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
| | - Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - James R. A. Skipworth
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Jose M. Vicencio
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Anthony P. Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke's Hospital Cambridge, United Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hugh Montgomery
- Institute for Human Health and Performance, University College London, London, United Kingdom
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Abstract
In recent years the actions of intracellular-acting, extracellular signaling proteins/peptides (intracrines) have become increasingly defined. General principles of intracrine action have been proposed. Mitochondria represent one locus of intracrine action, and thus far, angiotensin II, transforming growth factor-beta, growth hormone, atrial natriuretic peptide, Wnt 13, stanniocalcin, other renin-angiotensin system components, and vascular endothelial-derived growth factor, among others, have been shown to be mitochondria-localizing intracrines. The implications of this mitochondrial intracrine biology are discussed.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, 1514 Jefferson Hwy., New Orleans, LA 70121, USA.
| | | |
Collapse
|
22
|
de Cavanagh EMV, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol 2009; 296:H550-8. [DOI: 10.1152/ajpheart.01176.2008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malfunctioning mitochondria strongly participate in the pathogenesis of cardiovascular damage associated with hypertension and other disease conditions. Eukaryotic cells move, assume their shape, resist mechanical stress, accommodate their internal constituents, and transmit signals by relying on the constant remodeling of cytoskeleton filaments. Mitochondrial ATP is needed to support cytoskeletal dynamics. Conversely, mitochondria need to interact with cytoskeletal elements to achieve normal motility, morphology, localization, and function. Extracellular matrix (ECM) quantity and quality influence cellular growth, differentiation, morphology, survival, and mobility. Mitochondria can sense ECM composition changes, and changes in mitochondrial functioning modify the ECM. Maladaptive ECM and cytoskeletal alterations occur in a number of cardiac conditions and in most types of glomerulosclerosis, leading to cardiovascular and renal fibrosis, respectively. Angiotensin II (ANG II), a vasoactive peptide and growth factor, stimulates cytosolic and mitochondrial oxidant production, eventually leading to mitochondrial dysfunction. Also, by inducing integrin/focal adhesion changes, ANG II regulates ECM and cytoskeletal composition and organization and, accordingly, contributes to the pathogenesis of cardiovascular remodeling. ANG II-initiated integrin signaling results in the release of transforming growth factor-β1 (TGF-β1), a cytokine that modifies ECM composition and structure, induces reorganization of the cytoskeleton, and modifies mitochondrial function. Therefore, it is possible to hypothesize that the depression of mitochondrial energy metabolism brought about by ANG II is preceded by ANG II-induced integrin signaling and the consequent derangement of the cytoskeletal filament network and/or ECM organization. ANG II-dependent TGF-β1 release is a potential link between ANG II, ECM, and cytoskeleton derangements and mitochondrial dysfunction. It is necessary to emphasize that the present hypothesis is among many other plausible explanations for ANG II-mediated mitochondrial dysfunction. A potential limitation of this proposal is that the results compiled here were obtained in different cells, tissues, and/or experimental models.
Collapse
|
23
|
Peters J, Wanka H, Peters B, Hoffmann S. A renin transcript lacking exon 1 encodes for a non-secretory intracellular renin that increases aldosterone production in transgenic rats. J Cell Mol Med 2008; 12:1229-37. [PMID: 18782187 PMCID: PMC3865667 DOI: 10.1111/j.1582-4934.2008.00132.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renin transcripts lacking exon 1 and thus the signal sequence for co-translational transport to the endoplasmatic reticulum encode for a protein (exon[2-9]renin), that is confined to the cytoplasm. The function of exon(2-9)renin is currently unknown. Mitochondrial renin increases under conditions which stimulate aldosterone production. We hypothesized that exon(2-9)renin (1) is translated into a functionally active protein in vivo, (2) is not secreted but remains within the cytoplasm and (3) stimulates aldosterone production. To test these hypotheses we generated transgenic rats overexpressing exon(2-9)renin. Four transgenic lines were obtained expressing the transcript in various tissues including the heart and the adrenal gland. Renin was enriched particularly in the cytoplasm of transgenic rats. Renin was not elevated in plasma, indicating that exon(2-9)renin is produced but not secreted. The ratio of aldosterone to renin concentrations in plasma (PAC/PRC) was elevated in all transgenic lines except line 307, which also did not exhibit elevated cytoplasmatic renin levels in the adrenal gland (PAC/PRC in controls: 2.8±2.3; line 307: 1.9±0.8; n. s.; line 284: 5.8±1.9; P<0.02; line 294: 5.0±2.3; P<0.001; line 276: 10.3±5.1; P<0.001). We conclude that the exon(1A-9) renin transcript (1) is translated into a functionally active intracellular protein; (2) is targeted to the cytoplasm rather than being sorted to the secretory pathways and (3) is functionally active, regulating aldosterone production. The CX-(exon2-9)renin transgenic rat appears to be a useful model to study the role and the mechanisms of action of cytoplasmatic renin derived from exon(1A-9) transcripts.
Collapse
Affiliation(s)
- Jörg Peters
- Department of Cardiovascular Medicine, University of Greifswald, Greifswald, Germany.
| | | | | | | |
Collapse
|
24
|
Wanka H, Kessler N, Ellmer J, Endlich N, Peters BS, Clausmeyer S, Peters J. Cytosolic renin is targeted to mitochondria and induces apoptosis in H9c2 rat cardiomyoblasts. J Cell Mol Med 2008; 13:2926-37. [PMID: 18671756 PMCID: PMC4498947 DOI: 10.1111/j.1582-4934.2008.00448.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One important goal in cardiology is to prevent necrotic cell death in the heart. Necrotic cell death attracts neutrophils and monocytes into the injured myocardium. The consequences are fibrosis, remodelling and cardiac failure. The renin-angiotensin system promotes the development of cardiac failure. Recently, alternative renin transcripts have been identified lacking the signal sequence for a cotranslational transport to the endoplasmatic reticulum. These transcripts encode for a cytosolic renin with unknown functions. The expression of this alternative transcript increases after myocardial infarction. We hypothesized that cytosolic renin plays a role in survival and death of cardiomyocytes. To test this hypothesis, we overexpressed secretory or cytosolic renin in H9c2 cardiomyblasts and determined the rate of proliferation, necrosis and apoptosis. Proliferation rate, as indicated by BrdU incorporation into DNA, was reduced by secretory and cytosolic renin (cells transfected with control vector: 0.33 +/- 0.06; secretory renin: 0.12 +/- 0.02; P < 0.05; cytosolic renin: 0.15 +/- 0.03; P < 0.05). Necrosis was increased by secretory renin but decreased by cytosolic renin (LDH release after 10 days from cells transfected with control vector: 68.5 +/- 14.9; secretory renin: 100.0 +/- 0; cytosolic renin: 25.5 +/- 5.3% of content, each P < 0.05). Mitochondrial apoptosis, as indicated by phosphatidylserin translocation to the outer membrane, was unaffected by secretory renin but increased by cytosolic renin (controls: 23.8 +/- 3.9%; secretory renin: 22.1 +/- 4.7%; cytoplasmatic renin: 41.2 +/- 3.8%; P < 0.05). The data demonstrate that a cytosolic renin exists in cardiomyocytes, which in contradiction to secretory renin protects from necrosis but increases apoptosis. Non-secretory cytosolic renin can be considered as a new target for cardiac failure.
Collapse
Affiliation(s)
- Heike Wanka
- Institute of Physiology, University of Greifswald, Karlsburg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Peters J. Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 2008; 86:711-4. [PMID: 18368380 DOI: 10.1007/s00109-008-0328-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Renin is commonly known as a secretory glycoprotein, which is expressed, stored, and secreted in a regulated manner by the kidney. The rat kidney exclusively expresses secretory renin. In this organ, renin regulates glomerular filtration rate, vascular resistance, and sodium reabsorbtion. In the adult rat heart, secretory preprorenin is not expressed. Instead, an alternative renin transcript is expressed that encodes for a previously unrecognized cytosolic renin. The expression of cytosolic but not of secretory renin increases markedly after myocardial infarction, indicating a role specifically for cytosolic renin in postischemic repair processes. In the adrenal gland, secretory renin is expressed and provides the basis for an intra-adrenal angiotensin (ANG) II amplification system. This amplification system reduces the demand for circulating ANGII to stimulate aldosterone production and thus minimizes any detrimental effects of circulating ANGII in other tissues. The adrenal gland additionally expresses cytosolic renin, which is targeted to mitochondria. Adrenal cytosolic renin increases aldosterone production plasma renin independently.
Collapse
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University of Greifswald, Greifswalder Strasse 11C, Karlsburg, Germany.
| |
Collapse
|
26
|
de Cavanagh EMV, Ferder L, Toblli JE, Piotrkowski B, Stella I, Fraga CG, Inserra F. Renal mitochondrial impairment is attenuated by AT1 blockade in experimental Type I diabetes. Am J Physiol Heart Circ Physiol 2007; 294:H456-65. [PMID: 18024545 DOI: 10.1152/ajpheart.00926.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate whether ANG II type 1 (AT(1)) receptor blockade could protect kidney mitochondria in streptozotocin-induced Type 1 diabetes, we treated 8-wk-old male Sprague-Dawley rats with a single streptozotocin injection (65 mg/kg ip; STZ group), streptozotocin and drinking water containing either losartan (30 mg.kg(-1).day(-1); STZ+Los group) or amlodipine (3 mg.kg(-1).day(-1); STZ+Amlo group), or saline (intraperitoneally) and pure water (control group). Four-month-long losartan or amlodipine treatments started 30 days before streptozotocin injection to improve the antioxidant defenses. The number of renal lesions, plasma glucose and lipid levels, and proteinuria were higher and creatinine clearance was lower in STZ and STZ+Amlo compared with STZ+Los and control groups. Glycemia was higher in STZ+Los compared with control. Blood pressure, basal mitochondrial membrane potential and mitochondrial pyruvate content, and renal oxidized glutathione levels were higher and NADH/cytochrome c oxidoreductase activity was lower in STZ compared with the other groups. In STZ and STZ+Amlo groups, mitochondrial H(2)O(2) production rate was higher and uncoupling protein-2 content, cytochrome c oxidase activity, and renal glutathione level were lower than in STZ+Los and control groups. Mitochondrial nitric oxide synthase activity was higher in STZ+Amlo compared with the other groups. Mitochondrial pyruvate content and H(2)O(2) production rate negatively contributed to electron transfer capacity and positively contributed to renal lesions. Uncoupling protein-2 content negatively contributed to mitochondrial H(2)O(2) production rate and renal lesions. Renal glutathione reduction potential positively contributed to mitochondria electron transfer capacity. In conclusion, AT(1) blockade protects kidney mitochondria and kidney structure in streptozotocin-induced diabetes independently of blood pressure and glycemia.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou Y, Bouyer P, Boron WF. Role of the AT1A receptor in the CO2-induced stimulation of HCO3- reabsorption by renal proximal tubules. Am J Physiol Renal Physiol 2007; 293:F110-20. [PMID: 17356125 DOI: 10.1152/ajprenal.00516.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proximal tubule (PT) is major site for the reabsorption of filtered HCO(3)(-). Previous work on the rabbit PT showed that 1) increases in basolateral (BL) CO(2) concentration ([CO(2)](BL)) raise the HCO(3)(-) reabsorption rate (J(HCO(3))), and 2) the increase that luminal angiotensin II (ANG II) produces in J(HCO(3)) is greatest at 0% [CO(2)](BL) and falls to nearly zero at 20%. Here, we investigate the role of angiotensin receptors in the [CO(2)](BL) dependence of J(HCO(3)) in isolated perfused PTs. We found that, in rabbit S2 PT segments, luminal 10(-8) M saralasin (peptide antagonist of ANG II receptors), lowers baseline J(HCO(3)) (5% CO(2)) to the value normally seen at 0% in the absence of inhibitors and eliminates the J(HCO(3)) response to changes in [CO(2)](BL). However, basolateral 10(-8) M saralasin has no effect. As with saralasin, luminal 10(-8) M candesartan (AT(1) antagonist) reduces baseline J(HCO(3)) and eliminates the [CO(2)](BL) dependence of J(HCO(3)). Luminal 10(-7) M PD 123319 (AT(2) antagonist) has no effect. Finally, we compared PTs from wild-type and AT(1A)-null mice of the same genetic background. Knocking out AT(1A) modestly lowers baseline J(HCO(3)) and, like luminal saralasin or candesartan in rabbits, eliminates the J(HCO(3)) response to changes in [CO(2)](BL). Our accumulated evidence suggests that ANG II endogenous to the PT binds to the apical AT(1A) receptor and that this interaction is critical for both baseline J(HCO(3)) and its response to changes in [CO(2)](BL). Neither apical AT(2) receptors nor basolateral ANG II receptors are involved in these processes.
Collapse
Affiliation(s)
- Yuehan Zhou
- Dept. of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
28
|
Abstract
Angiotensin synthesis at tissue sites is well-established, and depends largely, if not completely, on kidney-derived renin. The exact tissue site of angiotensin generation (extracellular fluid, cell surface, intracellular compartment) is still being debated. In this review, we discuss the various possibilities, taking into consideration the intracellular occurrence/absence of prorenin, renin, angiotensinogen, angiotensin-converting enzyme, and angiotensin receptors; the local activation of prorenin to renin; the differences between in vivo and in vitro studies; and the methodologic difficulties related to angiotensin measurements. It is eventually concluded that angiotensin generation at tissue sites occurs extracellularly, most likely on the cell surface.
Collapse
Affiliation(s)
- Wenxia Chai
- Department of Pharmacology, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
29
|
Dilger K, Herrlinger C, Peters J, Seyberth HW, Schweer H, Klotz U. Effects of Celecoxib and Diclofenac on Blood Pressure, Renal Function, and Vasoactive Prostanoids in Young and Elderly Subjects. J Clin Pharmacol 2002. [DOI: 10.1177/009127000204200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Karin Dilger
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Charlotte Herrlinger
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Jörg Peters
- Department of Pharmacology, University of Heidelberg, Germany
| | | | - Horst Schweer
- Department of Pediatrics, Philipps University, Marburg, Germany
| | - Ulrich Klotz
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| |
Collapse
|
30
|
Ganguly A. Aldosterone. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19:101-43. [PMID: 9570034 DOI: 10.1210/edrv.19.2.0326] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|