Yamazaki H, Zawalich KC, Zawalich WS. Desensitization of the pancreatic beta-cell: effects of sustained physiological hyperglycemia and potassium.
Am J Physiol Endocrinol Metab 2006;
291:H1381-7. [PMID:
16868227 DOI:
10.1152/ajpendo.00137.2006]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation. Acute hyperkalemia (15-30 mM) stimulated calcium-dependent increases in both insulin secretion and PLC activation; however, prolonged hyperkalemia resulted in a biochemical and secretory lesion similar to that induced by sustained modest hyperglycemia. Glucose- (8 mM) desensitized islets retained significant sensitivity to stimulation by either carbachol or glucagon-like peptide-1. These findings emphasize the vulnerability of the beta-cell to even moderate sustained hyperglycemia and provide a biochemical rationale for achieving tight glucose control in diabetic patients. They also suggest that PLC activation plays a critically important role in the physiological regulation of glucose-induced secretion and in the desensitization of release that follows chronic hyperglycemia or hyperkalemia.
Collapse