1
|
Holeček M. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes? Nutrients 2020; 12:nu12103087. [PMID: 33050579 PMCID: PMC7600358 DOI: 10.3390/nu12103087] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are increased in starvation and diabetes mellitus. However, the pathogenesis has not been explained. It has been shown that BCAA catabolism occurs mostly in muscles due to high activity of BCAA aminotransferase, which converts BCAA and α-ketoglutarate (α-KG) to branched-chain keto acids (BCKAs) and glutamate. The loss of α-KG from the citric cycle (cataplerosis) is attenuated by glutamate conversion to α-KG in alanine aminotransferase and aspartate aminotransferase reactions, in which glycolysis is the main source of amino group acceptors, pyruvate and oxaloacetate. Irreversible oxidation of BCKA by BCKA dehydrogenase is sensitive to BCKA supply, and ratios of NADH to NAD+ and acyl-CoA to CoA-SH. It is hypothesized that decreased glycolysis and increased fatty acid oxidation, characteristic features of starvation and diabetes, cause in muscles alterations resulting in increased BCAA levels. The main alterations include (i) impaired BCAA transamination due to decreased supply of amino groups acceptors (α-KG, pyruvate, and oxaloacetate) and (ii) inhibitory influence of NADH and acyl-CoAs produced in fatty acid oxidation on citric cycle and BCKA dehydrogenase. The studies supporting the hypothesis and pros and cons of elevated BCAA concentrations are discussed in the article.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 50003 Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Zhen H, Kitaura Y, Kadota Y, Ishikawa T, Kondo Y, Xu M, Morishita Y, Ota M, Ito T, Shimomura Y. mTORC1 is involved in the regulation of branched-chain amino acid catabolism in mouse heart. FEBS Open Bio 2016; 6:43-9. [PMID: 27047741 PMCID: PMC4794793 DOI: 10.1002/2211-5463.12007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 12/01/2022] Open
Abstract
The branched‐chain α‐ketoacid dehydrogenase (BCKDH) complex regulates branched‐chain amino acid (BCAA) catabolism by controlling the second step of this catabolic pathway. In the present study, we examined the in vivo effects of treatment with an mTORC1 inhibitor, rapamycin, on cardiac BCKDH complex activity in mice. Oral administration of leucine in control mice significantly activated the cardiac BCKDH complex with an increase in cardiac concentrations of leucine and α‐ketoisocaproate. However, rapamycin treatment significantly suppressed the leucine‐induced activation of the complex despite similar increases in cardiac leucine and α‐ketoisocaproate levels. Rapamycin treatment fully inhibited mTORC1 activity, measured by the phosphorylation state of ribosomal protein S6 kinase 1. These results suggest that mTORC1 is involved in the regulation of cardiac BCAA catabolism.
Collapse
Affiliation(s)
- Hongmin Zhen
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Yoshihiro Kadota
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Takuya Ishikawa
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Yusuke Kondo
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Minjun Xu
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Yukako Morishita
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Miki Ota
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Tomokazu Ito
- Laboratory of Biomacromolecules Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| | - Yoshiharu Shimomura
- Laboratory of Nutritional Biochemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya, Japan
| |
Collapse
|
3
|
Abstract
Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.
Collapse
Affiliation(s)
- Christopher J Lynch
- Cellular and Molecular Physiology Department, The Pennsylvania State University, 500 University Drive, MC-H166, Hershey, PA 17033, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center, and Department of Pediatrics, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
4
|
Muthny T, Kovarik M, Sispera L, de Meijere A, Larionov OV, Tilser I, Holecek M. The effect of new proteasome inhibitors, belactosin A and C, on protein metabolism in isolated rat skeletal muscle. J Physiol Biochem 2009; 65:137-46. [PMID: 19886392 DOI: 10.1007/bf03179064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The proteasome inhibitors are used as research tools to study of the ATP-dependent ubiquitin-proteasome system. Some of them are at present undergoing clinical trials to be used as therapeutic agents for cancer or inflammation. These diseases are often accompanied by muscle wasting. We herein demonstrate findings about new proteasome inhibitors, belactosin A and C, and their direct effect on protein metabolism in rat skeletal muscle. M. soleus (SOL) and m. extensor digitorum longus (EDL) were dissected from both legs of male rats (40-60 g) and incubated in a buffer containing belactosin A or C (30 microM) or no inhibitor. The release of amino acids into the medium was estimated using high performance liquid chromatography to calculate total and myofibrillar proteolysis. Chymotrypsin-like activity (CTLA) of proteasome and cathepsin B, L activity were determined by fluorometric assay. Protein synthesis and leucine oxidation were detected using specific activity of L-[1-14C] leucine added to medium. Inhibited and control muscles from the same rat were compared using paired t-test. The results indicate that after incubation with both belactosin A and C total proteolysis and CTLA of proteasome decreased while cathepsin B, L activity did not change in both SOL and EDL. Leucine oxidation was significantly enhanced in SOL, protein synthesis decreased in EDL. Myofibrillar proteolysis was reduced in both muscles in the presence of belactosin A only. In summary, belactosin A and C affected basic parameters of protein metabolism in rat skeletal muscle. The response was both muscle- and belactosin-type-dependent.
Collapse
Affiliation(s)
- T Muthny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
5
|
Bajotto G, Murakami T, Nagasaki M, Sato Y, Shimomura Y. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metabolism 2009; 58:1489-95. [PMID: 19586643 DOI: 10.1016/j.metabol.2009.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/02/2009] [Indexed: 01/18/2023]
Abstract
The mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) is responsible for the committed step in branched-chain amino acid catabolism. In the present study, we examined BCKDC regulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats both before (8 weeks of age) and after (25 weeks of age) the onset of type 2 diabetes mellitus. Long-Evans Tokushima Otsuka (LETO) rats were used as controls. Plasma branched-chain amino acid and branched-chain alpha-keto acid concentrations were significantly increased in young and middle-aged OLETF rats. Although the hepatic complex was nearly 100% active in all animals, total BCKDC activity and protein abundance of E1alpha, E1beta, and E2 subunits were markedly lower in OLETF than in LETO rats at 8 and 25 weeks of age. In addition, hepatic BCKDC activity and protein amounts were significantly decreased in LETO rats aged 25 weeks than in LETO rats aged 8 weeks. In skeletal muscle, E1beta and E2 proteins were significantly reduced, whereas E1alpha tended to increase in OLETF rats. Taken together, these results suggest that (1) whole-body branched-chain alpha-keto acid oxidation capacity is extremely reduced in OLETF rats independently of diabetes development, (2) the aging process decreases BCKDC activity and protein abundance in the liver of normal rats, and (3) differential posttranscriptional regulation for the subunits of BCKDC may exist in skeletal muscle.
Collapse
Affiliation(s)
- Gustavo Bajotto
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
6
|
Wang X, Hu J, Price SR. Inhibition of PI3-kinase signaling by glucocorticoids results in increased branched-chain amino acid degradation in renal epithelial cells. Am J Physiol Cell Physiol 2007; 292:C1874-9. [PMID: 17229808 DOI: 10.1152/ajpcell.00617.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase(PI3K) is a pivotal enzyme involved in the control of a variety of diverse metabolic functions. Glucocorticoids have been shown to attenuate PI3K signaling in some nonrenal cell types, raising the possibility that some physiological effects of glucocorticoids in renal cells may be achieved by a similar mechanism. Therefore, we tested whether glucocorticoids affect signaling through the insulin receptor substrate (IRS)-1/PI3K/Akt signaling cascade in LLC-PK1-GR101 renal epithelial cells. Treatment of cells with dexamethasone for 24 h: 1) suppressed IRS-1-associated PI3K activity and Akt phosphorylation, 2) increased the level of the PI3K p85 regulatory subunit but not the p110 catalytic subunit, and 3) induced the phosphorylation of IRS-1 on inhibitory Ser307. We have previously reported that glucocorticoids increase branched-chain ketoacid dehydrogenase (BCKD) activity in LLC-PK1-GR101 cells. This response was achieved, in part, by alterations in the transcription of BCKD subunits and BCKD kinase, which inactivates the enzyme complex by phosphorylation. Therefore, we tested whether inhibition of PI3K signaling would mimick glucocorticoids by increasing branched-chain amino acid degradation. Expression of a dominant negative PI3K p85 regulatory subunit (Adp85ΔiSH2) increased BCKD activity, and dexamethasone did not further stimulate enzyme activity. Inhibition of PI3K using LY-294002 increased the transcription of the BCKD E2 subunit but not the E1α subunit or BCKD kinase. Thus, glucocorticoids inhibit signaling through the IRS-1/PI3K/Akt pathway with a consequence of increased branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- Xiaonan Wang
- Renal Division, Emory University, Rm. 338, Woodruff Memorial Bldg., 1639 Pierce Dr., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
7
|
Harris RA, Kobayashi R, Murakami T, Shimomura Y. Regulation of branched-chain alpha-keto acid dehydrogenase kinase expression in rat liver. J Nutr 2001; 131:841S-845S. [PMID: 11238771 DOI: 10.1093/jn/131.3.841s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branched-chain amino acids are toxic in excess but have to be conserved for protein synthesis. This is accomplished in large part by control of the activity of the branched-chain alpha-keto acid dehydrogenase complex by phosphorylation/dephosphorylation. Regulation of the activity of the hepatic enzyme appears particularly important, at least in rats, since an exceptional high activity of the complex in this tissue makes the liver the primary clearing house for excess branched-chain alpha-keto acids released by other tissues. The degree to which the branched-chain alpha-keto acid dehydrogenase complex is inactivated by phosphorylation is determined by the activity of the branched-chain alpha-keto acid dehydrogenase kinase, which is itself regulated by allosteric effectors as well as factors that affect its level of expression. Well established among these are the alpha-keto acid produced by leucine transamination, which is a potent inhibitor of the kinase, and starvation for dietary protein, which causes increased expression of the branched-chain alpha-keto acid dehydrogenase kinase. The latter finding resulted in the working hypothesis that nutrients and hormones regulate expression of the branched-chain alpha-keto acid dehydrogenase kinase. Evidence has been obtained for the involvement of thyroid hormone, glucocorticoids and ligands for peroxisome proliferator-activated receptor alpha. Thyroid hormone induces, whereas glucocorticoids and peroxisome proliferator-activated receptor alpha ligands repress, expression of the kinase. Increased blood levels of thyroid hormone are proposed to be responsible for increased expression of branched-chain alpha-keto acid dehydrogenase kinase in animals starved for protein.
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA.
| | | | | | | |
Collapse
|