1
|
Steinfeld N, Ma CIJ, Maxfield FR. Signaling pathways regulating the extracellular digestion of lipoprotein aggregates by macrophages. Mol Biol Cell 2024; 35:ar5. [PMID: 37910189 PMCID: PMC10881170 DOI: 10.1091/mbc.e23-06-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
The interaction between aggregated low-density lipoprotein (agLDL) and macrophages in arteries plays a major role in atherosclerosis. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment known as the lysosomal synapse. Macrophages form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. Our laboratory has identified TLR4 activation of MyD88/Syk as critical for digestive exophagy. Here we use pharmacological agents and siRNA knockdown to characterize signaling pathways downstream of Syk that are involved in digestive exophagy. Syk activates Bruton's tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). We show that PLCγ2 and to a lesser extent BTK regulate digestive exophagy. PLCγ2 cleaves PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Soluble IP3 activates release of Ca2+ from the endoplasmic reticulum (ER). We demonstrate that Ca2+ release from the ER is upregulated by agLDL and plays a key role in digestive exophagy. Both DAG and Ca2+ activate protein kinase Cα (PKCα). We find that PKCα is an important regulator of digestive exophagy. These results expand our understanding of the mechanisms of digestive exophagy, which could be useful in developing therapeutic interventions to slow development of atherosclerosis.
Collapse
Affiliation(s)
- Noah Steinfeld
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Cheng-I J. Ma
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | | |
Collapse
|
2
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Trang NN, Chen YJ. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis. Cardiovasc Diabetol 2023; 22:27. [PMID: 36747205 PMCID: PMC9903522 DOI: 10.1186/s12933-023-01756-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The novel sodium-glucose co-transporter 2 inhibitor (SGLT2i) potentially ameliorates heart failure and reduces cardiac arrhythmia. Cardiac fibrosis plays a pivotal role in the pathophysiology of HF and atrial myopathy, but the effect of SGLT2i on fibrogenesis remains to be elucidated. This study investigated whether SGLT2i directly modulates fibroblast activities and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, intracellular pH assay, intracellular inositol triphosphate (IP3) assay, Ca2+ fluorescence imaging, and Western blotting were applied to human atrial fibroblasts. Empagliflozin (an SGLT2i, 1, or 5 μmol/L) reduced migration capability and collagen type I, and III production. Compared with control cells, empagliflozin (1 μmol/L)- treated atrial fibroblasts exhibited lower endoplasmic reticulum (ER) Ca2+ leakage, Ca2+ entry, inositol trisphosphate (IP3), lower expression of phosphorylated phospholipase C (PLC), and lower intracellular pH. In the presence of cariporide (an Na+-H+ exchanger (NHE) inhibitor, 10 μmol/L), control and empagliflozin (1 μmol/L)-treated atrial fibroblasts revealed similar intracellular pH, ER Ca2+ leakage, Ca2+ entry, phosphorylated PLC, pro-collagen type I, type III protein expression, and migration capability. Moreover, empagliflozin (10 mg/kg/day orally for 28 consecutive days) significantly increased left ventricle systolic function, ß-hydroxybutyrate and decreased atrial fibrosis, in isoproterenol (100 mg/kg, subcutaneous injection)-induced HF rats. CONCLUSIONS By inhibiting NHE, empagliflozin decreases the expression of phosphorylated PLC and IP3 production, thereby reducing ER Ca2+ release, extracellular Ca2+ entry and the profibrotic activities of atrial fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- grid.260565.20000 0004 0634 0356Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yung-Hsin Yeh
- grid.413801.f0000 0001 0711 0593Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nguyen Ngoc Trang
- grid.414163.50000 0004 4691 4377Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan.
| |
Collapse
|
3
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Mazalan MB, Noor AM, Wahab Y, Yahud S, Zaman WSWK. Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review. MICROMACHINES 2021; 13:mi13010030. [PMID: 35056195 PMCID: PMC8779155 DOI: 10.3390/mi13010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Acoustics have a wide range of uses, from noise-cancelling to ultrasonic imaging. There has been a surge in interest in developing acoustic-based approaches for biological and biomedical applications in the last decade. This review focused on the application of surface acoustic waves (SAW) based on interdigital transducers (IDT) for live-cell investigations, such as cell manipulation, cell separation, cell seeding, cell migration, cell characteristics, and cell behaviours. The approach is also known as acoustofluidic, because the SAW device is coupled with a microfluidic system that contains live cells. This article provides an overview of several forms of IDT of SAW devices on recently used cells. Conclusively, a brief viewpoint and overview of the future application of SAW techniques in live-cell investigations were presented.
Collapse
Affiliation(s)
- Mazlee Bin Mazalan
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
- Correspondence: (M.B.M.); (W.S.W.K.Z.)
| | - Anas Mohd Noor
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Yufridin Wahab
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Shuhaida Yahud
- AMBIENCE, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia; (A.M.N.); (Y.W.); (S.Y.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
- Correspondence: (M.B.M.); (W.S.W.K.Z.)
| |
Collapse
|
5
|
Brugger MS, Baumgartner K, Mauritz SCF, Gerlach SC, Röder F, Schlosser C, Fluhrer R, Wixforth A, Westerhausen C. Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model. Proc Natl Acad Sci U S A 2020; 117:31603-31613. [PMID: 33257581 PMCID: PMC7749343 DOI: 10.1073/pnas.2005203117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report on in vitro wound-healing and cell-growth studies under the influence of radio-frequency (rf) cell stimuli. These stimuli are supplied either by piezoactive surface acoustic waves (SAWs) or by microelectrode-generated electric fields, both at frequencies around 100 MHz. Employing live-cell imaging, we studied the time- and power-dependent healing of artificial wounds on a piezoelectric chip for different cell lines. If the cell stimulation is mediated by piezomechanical SAWs, we observe a pronounced, significant maximum of the cell-growth rate at a specific SAW amplitude, resulting in an increase of the wound-healing speed of up to 135 ± 85% as compared to an internal reference. In contrast, cells being stimulated only by electrical fields of the same magnitude as the ones exposed to SAWs exhibit no significant effect. In this study, we investigate this effect for different wavelengths, amplitude modulation of the applied electrical rf signal, and different wave modes. Furthermore, to obtain insight into the biological response to the stimulus, we also determined both the cell-proliferation rate and the cellular stress levels. While the proliferation rate is significantly increased for a wide power range, cell stress remains low and within the normal range. Our findings demonstrate that SAW-based vibrational cell stimulation bears the potential for an alternative method to conventional ultrasound treatment, overcoming some of its limitations.
Collapse
Affiliation(s)
- Manuel S Brugger
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Stiftung der Deutschen Wirtschaft gGmbH, 10178 Berlin, Germany
| | - Kathrin Baumgartner
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Studienstiftung des deutschen Volkes e.V., 53175 Bonn, Germany
| | - Sophie C F Mauritz
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Stefan C Gerlach
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Hans-Seidel-Stiftung e.V., 80636 Munich, Germany
| | - Florian Röder
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) e.V., 81377 Munich, Germany
| | - Achim Wixforth
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Center for NanoScience, 80799 Munich, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany;
- Center for NanoScience, 80799 Munich, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
6
|
Rana A, Singh S, Sharma R, Kumar A. Traumatic Brain Injury Altered Normal Brain Signaling Pathways: Implications for Novel Therapeutics Approaches. Curr Neuropharmacol 2019; 17:614-629. [PMID: 30207236 PMCID: PMC6712292 DOI: 10.2174/1570159x16666180911121847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is the main reason of lifelong disability and casualty worldwide. In the United State alone, 1.7 million traumatic events occur yearly, out of which 50,000 results in deaths. Injury to the brain could alter various biological signaling pathways such as excitotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis which can result in various neurological disorders such as Psychosis, Depression, Alzheimer disease, Parkinson disease, etc. In literature, various reports have indicated the alteration of these pathways after traumatic brain injury but the exact mechanism is still unclear. Thus, in the first part of this article, we have tried to summarize TBI as a modulator of various neuronal signaling pathways. Currently, very few drugs are available in the market for the treatment of TBI and these drugs only provide the supportive care. Thus, in the second part of the article, based on TBI altered signaling pathways, we have tried to find out potential targets and promising therapeutic approaches in the treatment of TBI.
Collapse
Affiliation(s)
| | | | | | - Anoop Kumar
- Address correspondence to this author at the Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab-142001, India; Tel: +91 636 324200/324201; E-mail:
| |
Collapse
|
7
|
Takagi R, Ogasawara R, Takegaki J, Tamura Y, Tsutaki A, Nakazato K, Ishii N. Past injurious exercise attenuates activation of primary calcium-dependent injury pathways in skeletal muscle during subsequent exercise. Physiol Rep 2018; 6:e13660. [PMID: 29595913 PMCID: PMC5875535 DOI: 10.14814/phy2.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
Abstract
Past contraction‐induced skeletal muscle injury reduces the degree of subsequent injury; this phenomenon is called the “repeated bout effect (RBE).” This study addresses the mechanisms underlying the RBE, focusing on primary calcium‐dependent injury pathways. Wistar rats were subdivided into single injury (SI) and repeated injury (RI) groups. At age 10 weeks, the right gastrocnemius muscle in each rat in the RI group was subjected to strenuous eccentric contractions (ECs). Subsequently, mild ECs were imposed on the same muscle of each rat at 14 weeks of age in both groups. One day after the exercise, the RI group showed a lower strength deficit than did the SI group, and neither group manifested any increase in membrane permeability. The concentration of protein carbonyls and activation of total calpain increased after ECs given at the age of 14 weeks. Nonetheless, these increases were lower in the RI group than in the SI group. Furthermore, calcium‐dependent autolysis of calpain‐1 and calpain‐3 in the RI group was diminished as compared with that in the SI group. Although peak ankle joint torque and total force generation during ECs at the age of 14 weeks were similar between the two groups, phosphorylation of JNK (Thr183/Tyr185), an indicator of mechanical stress applied to a muscle, was lower in the RI group than in the SI group. These findings suggest that activation of the primary calcium‐dependent injury pathways is attenuated by past injurious exercise, and mechanical stress applied to muscle fibers during ECs may decrease in the RBE.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Aichi, Japan
| | - Junya Takegaki
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Arata Tsutaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
UDP/P2Y6 receptor signaling regulates IgE-dependent degranulation in human basophils. Allergol Int 2017; 66:574-580. [PMID: 28318884 DOI: 10.1016/j.alit.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND P2Y purinergic receptors (P2YR) are G protein-coupled receptors that are stimulated by extracellular nucleotides. They mediate cellular effects by regulating cAMP production, protein kinase C activation, inositol trisphosphate generation, and Ca2+ release from intracellular stores. The P2Y6 receptor of this family is selectively stimulated by UDP, and selectively inhibited by MRS2578. In the present study, we examined the effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in human basophils. METHODS Basophils were purified from human peripheral blood. The mRNA expression of genes encoding P2YR and ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) was measured by RT-PCR. Intracellular Ca2+ influx via UDP/P2Y6 receptor signaling in basophils was detected using a calcium probe. The effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in basophils was confirmed by measuring CD63 expression by flow cytometry. Autocrine secretion of nucleotides was detected by HPLC analysis. RESULTS We showed that purified basophils express P2Y6 mRNA and that UDP increased intracellular Ca2+, which was reduced by MRS2578 treatment. UDP promoted IgE-dependent degranulation. Furthermore, MRS2578 inhibited IgE-dependent degranulation in basophils. HPLC analysis indicated that basophils spontaneously secrete UTP. In addition, basophils expressed the extracellular nucleotide hydrolases ENTPDase2, ENTPDase3, and ENTPDase8. CONCLUSIONS This study showed that UDP/P2Y6 receptor signaling is involved in the regulation of IgE-dependent degranulation in basophils, which might stimulate the P2Y6 receptor via the autocrine secretion of UTP. Thus, this receptor represents a potential target to regulate IgE-dependent degranulation in basophils during allergic diseases.
Collapse
|
9
|
Seghers F, Yerna X, Zanou N, Devuyst O, Vennekens R, Nilius B, Gailly P. TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells. J Physiol 2016; 594:7327-7340. [PMID: 27779758 DOI: 10.1113/jp273595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca2+ ]i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca2+ ]i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4-/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. ABSTRACT The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca2+ ]i of JG cells. The inverse relationship between [Ca2+ ]i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca2+ ]i transient in JG cells, is however, unknown. We observed that [Ca2+ ]i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4-/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4-/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.
Collapse
Affiliation(s)
- François Seghers
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Nadège Zanou
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Olivier Devuyst
- University of Zurich, Institute of Physiology, CH-8057, Zurich, Switzerland
| | - Rudi Vennekens
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Bernd Nilius
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| |
Collapse
|
10
|
TRP Channels Involved in Spontaneous L-Glutamate Release Enhancement in the Adult Rat Spinal Substantia Gelatinosa. Cells 2014; 3:331-62. [PMID: 24785347 PMCID: PMC4092856 DOI: 10.3390/cells3020331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
The spinal substantia gelatinosa (SG) plays a pivotal role in modulating nociceptive transmission through dorsal root ganglion (DRG) neurons from the periphery. TRP channels such as TRPV1 and TRPA1 channels expressed in the SG are involved in the regulation of the nociceptive transmission. On the other hand, the TRP channels located in the peripheral terminals of the DRG neurons are activated by nociceptive stimuli given to the periphery and also by plant-derived chemicals, which generates a membrane depolarization. The chemicals also activate the TRP channels in the SG. In this review, we introduce how synaptic transmissions in the SG neurons are affected by various plant-derived chemicals and suggest that the peripheral and central TRP channels may differ in property from each other.
Collapse
|
11
|
Yue HY, Jiang CY, Fujita T, Kumamoto E. Zingerone enhances glutamatergic spontaneous excitatory transmission by activating TRPA1 but not TRPV1 channels in the adult rat substantia gelatinosa. J Neurophysiol 2013; 110:658-71. [PMID: 23657286 DOI: 10.1152/jn.00754.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are thought to play a role in regulating nociceptive transmission to spinal substantia gelatinosa (SG) neurons. It remains to be unveiled whether the TRP channels in the central nervous system are different in property from those involved in receiving nociceptive stimuli in the peripheral nervous system. We examined the effect of the vanilloid compound zingerone, which activates TRPV1 channels in the cell body of a primary afferent neuron, on glutamatergic excitatory transmission in the SG neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Bath-applied zingerone reversibly and concentration-dependently increased spontaneous excitatory postsynaptic current (EPSC) frequency. This effect was accompanied by an inward current at -70 mV that was resistant to glutamate receptor antagonists. These zingerone effects were repeated and persisted in Na(+)-channel blocker tetrodotoxin-, La(3+)-, or IP3-induced Ca(2+)-release inhibitor 2-aminoethoxydiphenyl borate-containing or Ca(2+)-free Krebs solution. Zingerone activity was resistant to the selective TRPV1 antagonist capsazepine but sensitive to the nonselective TRP antagonist ruthenium red, the TRPA1 antagonist HC-030031, and the Ca(2+)-induced Ca(2+)-release inhibitor dantrolene. TRPA1 agonist allyl isothiocyanate but not capsaicin inhibited the facilitatory effect of zingerone. On the other hand, zingerone reduced monosynaptically evoked EPSC amplitudes, as did TRPA1 agonists. Like allyl isothiocyanate, zingerone enhanced GABAergic spontaneous inhibitory transmission in a manner sensitive to tetrodotoxin. We conclude that zingerone presynaptically facilitates spontaneous excitatory transmission, probably through Ca(2+)-induced Ca(2+)-release mechanisms, and produces a membrane depolarization in SG neurons by activating TRPA1 but not TRPV1 channels.
Collapse
Affiliation(s)
- Hai-Yuan Yue
- Department of Physiology, Saga Medical School, Saga, Japan
| | | | | | | |
Collapse
|
12
|
Beierwaltes WH. Hydrogen sulfide, renin, and regulating the second messenger cAMP. Focus on "Hydrogen sulfide regulates cAMP homeostasis and renin degranulation in As4.1 and rat renin-rich kidney cell". Am J Physiol Cell Physiol 2011; 302:C21-3. [PMID: 21998138 DOI: 10.1152/ajpcell.00375.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Nezu A, Tanimura A, Morita T, Tojyo Y. Visualization of Ins(1,4,5)P3 dynamics in living cells: two distinct pathways for Ins(1,4,5)P3 generation following mechanical stimulation of HSY-EA1 cells. J Cell Sci 2010; 123:2292-8. [PMID: 20554898 DOI: 10.1242/jcs.064410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, the contribution of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] generation on the mechanical-stimulation-induced Ca(2+) response was investigated in HSY-EA1 cells. Mechanical stimulation induced a local increase in the cytosolic concentration of Ins(1,4,5)P(3) ([IP(3)](i)), as indicated by the Ins(1,4,5)P(3) biosensor LIBRAvIII. The area of this increase expanded like an intracellular Ins(1,4,5)P(3) wave as [IP(3)](i) increased in the stimulated region. A small transient [IP(3)](i) increase was subsequently seen in neighboring cells. The phospholipase C inhibitor U-73122 abolished these Ins(1,4,5)P(3) responses and resultant Ca(2+) releases. The purinergic receptor blocker suramin completely blocked increases in [IP(3)](1) and the Ca(2+) release in neighboring cells, but failed to attenuate the responses in mechanically stimulated cells. These results indicate that generation of Ins(1,4,5)P(3) in response to mechanical stimulation is primarily independent of extracellular ATP. The speed of the mechanical-stimulation-induced [IP(3)](i) increase was much more rapid than that induced by a supramaximal concentration of ATP (1 mM). The contribution of the Ins(1,4,5)P(3)-induced Ca(2+) release was larger than that of Ca(2+) entry in the Ca(2+) response to mechanical stimulation in HSY-EA1 cells.
Collapse
Affiliation(s)
- Akihiro Nezu
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| | | | | | | |
Collapse
|
14
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Abstract
The renin-angiotensin system (RAS) is critically involved in the regulation of the salt and volume status of the body and blood pressure. The activity of the RAS is controlled by the protease renin, which is released from the renal juxtaglomerular epithelioid cells into the circulation. Renin release is regulated in negative feedback-loops by blood pressure, salt intake, and angiotensin II. Moreover, sympathetic nerves and renal autacoids such as prostaglandins and nitric oxide stimulate renin secretion. Despite numerous studies there remained substantial gaps in the understanding of the control of renin release at the organ or cellular level. Some of these gaps have been closed in the last years by means of gene-targeted mice and advanced imaging and electrophysiological methods. In our review, we discuss these recent advances together with the relevant previous literature on the regulation of renin release.
Collapse
|
16
|
Rao SP, Sikdar SK. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication. Glia 2007; 55:1680-9. [PMID: 17886293 DOI: 10.1002/glia.20564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
17
|
Pan L, Wang Y, Jones CA, Glenn ST, Baumann H, Gross KW. Enhancer-dependent inhibition of mouse renin transcription by inflammatory cytokines. Am J Physiol Renal Physiol 2004; 288:F117-24. [PMID: 15367390 DOI: 10.1152/ajprenal.00333.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory cytokines have been shown to inhibit renin gene expression in the kidney in vivo and the kidney tumor-derived As4.1 cell line. In this report, we show that cytokines oncostatin M (OSM), IL-6, and IL-1beta inhibit transcriptional activity associated with 4.1 kb of the mouse renin 5'-flanking sequence in As4.1 cells. The 242-bp enhancer (-2866 to -2625 bp) is sufficient to mediate the observed inhibitory effects. Sequences within the enhancer required for inhibition by each of these cytokines have been determined by deletional and mutational analysis. Results indicate that a 39-bp region (CEC) containing a cAMP-responsive element, an E-box, and a steroid receptor-binding site, previously identified as the most critical elements for enhancer activity, is sufficient for the inhibition induced by IL-1beta. However, mutation of each of the three component sites does not abolish the inhibition by IL-1beta, suggesting that the target(s) of cytokine action may not be the transcription factors binding directly to these sites. This CEC region is also critical, but not sufficient, for the inhibition mediated by OSM and IL-6. These data suggest that the direct target of the associated cytokines may be coactivators interacting with transcription factors binding at the enhancer. Finally, we show that OSM treatment caused a 17-fold increase in promoter activity when only 2,625 bp of the Ren-1(c) flanking sequence were tested, in which the enhancer is not present. Three regions including -2625 to -1217 bp, the HOX.PBX binding site at -60 bp, and -59 to +6 bp have been found to contribute to this induction.
Collapse
Affiliation(s)
- Li Pan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton St., Buffalo, NY 14263-0001, USA
| | | | | | | | | | | |
Collapse
|
18
|
Friis UG, Jørgensen F, Andreasen D, Jensen BL, Skøtt O. Molecular and functional identification of cyclic AMP-sensitive BKCa potassium channels (ZERO variant) and L-type voltage-dependent calcium channels in single rat juxtaglomerular cells. Circ Res 2003; 93:213-20. [PMID: 12842920 DOI: 10.1161/01.res.0000085041.70276.3d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed at identifying the type and functional significance of potassium channels and voltage-dependent calcium channels (Ca(v)) in single rat JG cells using whole-cell patch clamp. Single JG cells displayed outward rectification at positive membrane potentials and limited net currents between -60 and -10 mV. Blockade of K+ channels with TEA inhibited 83% of the current at +105 mV. Inhibition of KV channels with 4-AP inhibited 21% of the current. Blockade of calcium-sensitive voltage-gated K+ channels (BKCa) with charybdotoxin or iberiotoxin inhibited 89% and 82% of the current, respectively. Double immunofluorescence confirmed the presence of BKCa and renin in the same cell. cAMP increased the outward current by 1.6-fold, and this was inhibited by 74% with iberiotoxin. Expression of the cAMP-sensitive splice variant (ZERO) of BKCa was confirmed in single-sampled JG cells by RT-PCR. The resting membrane potential of JG cells was -32 mV and activation of BKCa with cAMP hyperpolarized cells on average 16 mV, and inhibition with TEA depolarized cells by 17 mV. The cells displayed typical high-voltage activated calcium currents sensitive to the L-type Ca(v) blocker calciseptine. RT-PCR analysis and double-immunofluorescence labeling showed coexpression of renin and L-type Ca(v) 1.2. The cAMP-mediated increase in exocytosis (measured as membrane capacitance) was inhibited by depolarization to +10 mV, and this inhibitory effect was blocked with calciseptine, whereas K+-blockers had no effect. We conclude that JG cells express functional cAMP-sensitive BKCa channels (the ZERO splice variant) and voltage-dependent L-type Ca2+ channels.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Cell Membrane/metabolism
- Cell Membrane/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Electric Capacitance
- Ion Channel Gating/drug effects
- Juxtaglomerular Apparatus/cytology
- Juxtaglomerular Apparatus/metabolism
- Large-Conductance Calcium-Activated Potassium Channels
- Male
- Patch-Clamp Techniques
- Potassium/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/biosynthesis
- Potassium Channels, Calcium-Activated/classification
- Potassium Channels, Calcium-Activated/drug effects
- Potassium Channels, Calcium-Activated/genetics
- Potassium Channels, Calcium-Activated/metabolism
- Rats
- Rats, Sprague-Dawley
- Renin/metabolism
- Sodium/metabolism
Collapse
Affiliation(s)
- Ulla G Friis
- Department of Physiology and Pharmacology, University of Southern Denmark, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Ryan MJ, Black TA, Millard SL, Gross KW, Hajduczok G. Endothelin-1 increases calcium and attenuates renin gene expression in As4.1 cells. Am J Physiol Heart Circ Physiol 2002; 283:H2458-65. [PMID: 12388321 DOI: 10.1152/ajpheart.00295.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and blood pressure modulator. Renin secretion from juxtaglomerular (JG) cells is crucial for blood pressure and electrolyte homeostasis and has been shown to be modulated by ET-1; however, the cellular and molecular mechanism of this regulation is not clear. The purpose of this study was to gain a better understanding of the cellular and molecular pathways activated by ET-1 by using a renin-producing cell line As4.1. ET-1 caused an increase in As4.1 cell intracelluar Ca(2+) concentration ([Ca(2+)](i)) mediated by the ET(A) receptor as its antagonist, BQ-123, abolished the response. The nitric oxide donor nitroprusside, but not 8-bromo-cGMP, reduced the time necessary for successive ET-1 responses. Endothelin-3 had no effect on [Ca(2+)](i). ET-1 dose dependently increased total inositol phosphates with an EC(50) of 2.1 nM. ET-1 reduced renin mRNA by 68% independently of changes in message decay. With the use of a renin-luciferase reporter system in As4.1 cells, ET-1 reduced luciferase activity by 51%, suggesting that renin gene transcription is directly modified by ET-1.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, State University of New York at Buffalo, 14214, USA.
| | | | | | | | | |
Collapse
|
20
|
Hirota N, Ichihara A, Koura Y, Hayashi M, Saruta T. Phospholipase D contributes to transmural pressure control of prorenin processing in juxtaglomerular cell. Hypertension 2002; 39:363-7. [PMID: 11882574 DOI: 10.1161/hy02t2.102807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was designed to delineate the involvement of phospholipase C (PLC) and phospholipase D (PLD) in transmural pressure control of renin synthesis and secretion. Primary cultures of rat juxtaglomerular (JG) cells were applied to a transmural pressure-loading apparatus for 12 hours, and the renin secretion rate (RSR), active renin content (ARC), and total (active + inactive) renin content (TRC) were determined. Under control conditions (n=5), transmural pressure decreased RSR (78.1 +/- 3.0 and 64.6 +/- 4.4% for 0 or 40 mm Hg, respectively; P<0.05) and ARC (42.8 +/- 3.3 and 26.0 +/- 3.9 ng of angiotensin I per hour per million cells for 0 or 40 mm Hg, respectively; P<0.05) but did not have a significant effect on TRC (99.5 +/- 6.7 and 89.2 +/- 4.6 ng of angiotensin I per hour per million cells for 0 or 40 mm Hg, respectively). Treatment with PLC inhibitors, 2-nitro-4-carboxyphenyl-N,N-diphenyl-carbamate (200 micromol/L) and U73122 (10 micromol/L) did not alter RSR but prevented the RSR decrease with transmural pressure, whereas neither 2-nitro-4-carboxyphenyl-N,N-diphenyl-carbamate nor U73122 altered ARC, TRC, or the decrease in ARC with transmural pressure. Experiments were also performed using JG cells (n=5) treated with a PLD inhibitor, 4-(2-aminoethyl)-benzensulfonyl fluoride (AEBSF, 100 micromol/L). Treatment with AEBSF did not influence basal levels of RSR, ARC, and TRC or the RSR decrease with transmural pressure. However, AEBSF did inhibit the decrease in ARC with transmural pressure. These results indicate that transmural pressure inhibits renin secretion via PLC-dependent pathways and prevents conversion of inactive renin to active renin via PLD-dependent mechanisms in JG cells.
Collapse
Affiliation(s)
- Nobuhisa Hirota
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Rueckschloss U, Isenberg G. Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J Physiol 2001; 537:363-70. [PMID: 11731570 PMCID: PMC2278948 DOI: 10.1111/j.1469-7793.2001.00363.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. L-type Ca2+ channel currents (I(Ca)) were measured in guinea-pig ventricular myocytes (22 degrees C, 300 ms steps from -45 to +10 mV). Pulsing at 0.5 Hz reduced I(Ca) within 5 min to 92 +/- 3% (mean +/- S.E.M., n = 14) and within 10 min to 83 +/- 4 % ('run-down' with reference to I(Ca) after a 5 min equilibration period). 2. Bath-applied cytochalasin D (cytD, 10 microM) reduced I(Ca) to 75 +/- 4% within 5 min and to 61 +/- 4% within 10 min ('cytD reduction of I(Ca)') by reduction of maximal Ca2+ conductance (suggested by fits of time course and of current-potential (I-V) curves). 3. Preincubation with phalloidin (bath applied, 100 microM, 5 h) prevented the cytD reduction of I(Ca). Since phalloidin specifically blocks F-actin depolymerization, cytD reduction of I(Ca) is linked to depolymerization of F-actin. 4. CytD did not attenuate the beta-adrenergic stimulation of I(Ca) (30 nM isoproterenol), suggesting that A kinase anchoring proteins are unlikely to mediate the cytD reduction of I(Ca). The cytD reduction of I(Ca) was abolished by extra-/intracellular acidosis (pH(o) 6.9), by cell dialysis of 5 mM BAPTA, or by serine/threonine protein phosphatase inhibitors. 5. Actin-depolymerizing factor (ADF)/cofilin are proteins that bind to actin, mediate a pH-sensitive depolymerization of F-actin, and are activated by dephosphorylation. Western blots from hearts perfused with solutions containing zero or 10 microM cytD indicated that cytD reduces the ratio of phosphorylated to total ADF/cofilin content by 50%. 6. The data support the concept that cytD mediates dephosphorylation and activation of ADF/cofilin, leading to depolymerization of F-actin with a subsequent reduction of I(Ca).
Collapse
Affiliation(s)
- U Rueckschloss
- Department of Physiology, Faculty of Medicine, Martin-Luther-University, 06097 Halle, Germany.
| | | |
Collapse
|
22
|
Ryan MJ, Black TA, Gross KW, Hajduczok G. Cyclic mechanical distension regulates renin gene transcription in As4.1 cells. Am J Physiol Endocrinol Metab 2000; 279:E830-7. [PMID: 11001765 DOI: 10.1152/ajpendo.2000.279.4.e830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renin-producing and -secreting juxtaglomerular (JG) cells are thought to function as the baroreceptor of the kidney. The mechanism by which changes in pressure, or mechanical force, regulate renin at the molecular level has not been elucidated. The renin gene-expressing and -secreting clonal cell line As4.1 was derived from transgene-targeted oncogenesis in mice and was used as a cellular model for JG cells. As4.1 cells subjected to cyclic mechanical distension for a period of 24 h at various frequencies (0. 05 or 0.5 Hz) and magnitudes (12 or 24% elongation) were analyzed via Northern analysis for renin mRNA levels. Results indicate that renin gene expression is decreased by 50-85% and returns to basal levels after a 24-h recovery period. Renin gene expression was attenuated independently of elevated cell growth or changes in renin message decay, suggesting that renin gene transcription is directly modulated by mechanical distension. Transient transfection of As4.1 cells with renin 5' flanking sequence-luciferase reporter gene constructs confirmed the role of mechanical stimulation in regulating renin gene transcription. A 43% inhibition of luciferase activity, by stretch, was observed in cells transfected with a 4,000 base pair 5' flanking sequence to the renin proximal promoter. These results demonstrate for the first time that changes in mechanical force can result in the regulation of renin gene transcription and thus provide further insight into the baroreceptor properties of renin-expressing cells.
Collapse
Affiliation(s)
- M J Ryan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo 14214, USA
| | | | | | | |
Collapse
|