1
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
2
|
Stamper IJ, Wang X. Integrated multiscale mathematical modeling of insulin secretion reveals the role of islet network integrity for proper oscillatory glucose-dose response. J Theor Biol 2019; 475:1-24. [PMID: 31078658 DOI: 10.1016/j.jtbi.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
The integrated multiscale mathematical model we present in this paper is built on two of our previous ones: a model of electrical oscillation in β-cells connected to neighboring cells within a three-dimensional (3D) network, and a model of glucose-induced β-cell intracellular insulin granule trafficking and insulin secretion. In order to couple these two models, we assume that the rate at which primed and release-ready insulin granules fuse at the cell membrane increases with the intracellular calcium concentration. Moreover, by assuming that the fraction of free KATP-channels decreases with increasing glucose concentration, we take into account the effect of glucose dose on membrane potential and, indirectly via the effect on the potential, on intracellular calcium. Numerical analysis of our new model shows that a single step increase in glucose concentration yields the experimentally observed characteristic biphasic insulin release. We find that the biphasic response is typically oscillatory in nature for low and moderate glucose concentrations. The plateau fraction (the time that the β-cells spend in their active firing phase) increases with increasing glucose dose, as does the total insulin secretion. At high glucose concentrations, the oscillations tend to vanish due to a constantly elevated membrane potential of the β-cells. Our results also demonstrate how insulin secretion characteristics in various glucose protocols depend on the degree of β-cell loss, highlighting the potential impact from disease. In particular, both the secretory capacity (average insulin secretion rate per β-cell) and the oscillatory response diminish as the islet cell network becomes compromised.
Collapse
Affiliation(s)
- I Johanna Stamper
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Xujing Wang
- The Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), of the National Institutes of Health(NIH), Bethesda, Maryland 20817, United States.
| |
Collapse
|
3
|
Safayee S, Karbalaei N, Noorafshan A, Nadimi E. Induction of oxidative stress, suppression of glucose-induced insulin release, ATP production, glucokinase activity, and histomorphometric changes in pancreatic islets of hypothyroid rat. Eur J Pharmacol 2016; 791:147-156. [PMID: 27568837 DOI: 10.1016/j.ejphar.2016.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022]
Abstract
Thyroid hormones have important role in metabolism and impairment of glucose metabolism and insulin secretion has been shown in hypothyroid rats but the exact mechanisms for this defect are poorly understood. The aim of this study was to investigate the effect of hypothyroidism on oxidative stress parameters, insulin secretory pathway and histomorphometric changes of pancreas. In the isolated islets of the control and methimazole -treated hypothyroid insulin secretion and content, ATP production, Glucokinase, and hexokinase specific activity and kATP and L-type channels sensitivity were assayed. In order to determine oxidative stress parameters, antioxidant enzymes and lipid peroxidation were measured in pancreatic homogenates. Histomorphometric changes and histochemistry of the islet in both groups were compared. Results showed that plasma glucose and insulin concentration and their area under the curve during IPGTT in hypothyroid group were respectively higher and lower than the controls. In the hypothyroid islets, glucose stimulated insulin secretion, ATP production, hexokinase and glucokinase activities were decreased. Hypothyroid induced a significant increased lipid peroxidation, and decreased the antioxidant enzyme activity. Compared with the control group, insulin antibody positivity, the total volume of the pancreas, islets, and the total number as well as the mean volume of the beta cells were also significantly decreased in the hypothyroid group. These findings indicate that oxidative stress produced under hypothyroidism could have a role in progression of pancreatic β-cell dysfunction, reduced beta cell mass and decreased glucokinase activity, impairing glucose tolerance and insulin secretion.
Collapse
Affiliation(s)
- Sepideh Safayee
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Stamper IJ, Wang X. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules. J Theor Biol 2012; 318:210-25. [PMID: 23154190 DOI: 10.1016/j.jtbi.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/28/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release.
Collapse
Affiliation(s)
- I Johanna Stamper
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama, AL 35294, USA.
| | | |
Collapse
|
5
|
Kominato R, Fujimoto S, Mukai E, Nakamura Y, Nabe K, Shimodahira M, Nishi Y, Funakoshi S, Seino Y, Inagaki N. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabain-treated rat pancreatic islets. Diabetologia 2008; 51:1226-35. [PMID: 18449527 DOI: 10.1007/s00125-008-1008-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/16/2008] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Na(+)/K(+)-ATPase inhibition by ouabain suppresses ATP production by generating reactive oxygen species (ROS) and impairs glucose-induced insulin secretion from pancreatic islets. To clarify the signal-transducing function of Na(+)/K(+)-ATPase in decreasing ATP production by the generation of ROS in pancreatic islets, the involvement of Src was examined. In addition, the significance of Src activation in diabetic islets was examined. METHODS Isolated islets from Wistar rats and diabetic Goto-Kakizaki (GK) rats (a model for diabetes) were used. ROS was measured by 5-(and 6)-chloromethyl-2',7'-dichlorofluorescein fluorescence using dispersed islet cells. After lysates were immunoprecipitated by anti-Src antibody, immunoblotting was performed. RESULTS Ouabain caused a rapid Tyr(418) phosphorylation, indicating activation of Src in the presence of high glucose. The specific Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) restored the ouabain-induced decrease in ATP content and the increase in ROS production. Both PP2 and ROS scavenger restored the impaired insulin release and impaired ATP elevation in GK islets, but had no such effect in control islets. PP2 reduced the high glucose-induced increase in ROS generation in GK islet cells but had no effect on that in control islet cells. Moreover, ouabain had no effect on ATP content and ROS production in the presence of high glucose in GK islets. CONCLUSIONS/INTERPRETATION These results indicate that Src plays a role in the signal-transducing function of Na(+)/K(+)-ATPase, in which ROS generation decreases ATP production in control islets. Moreover, ROS generated by Src activation plays an important role in impaired glucose-induced insulin secretion in GK islets, in which Src is endogenously activated independently of ouabain.
Collapse
Affiliation(s)
- R Kominato
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Vagn Korsgaard T, Colding-Jørgensen M. Time-dependent mechanisms in beta-cell glucose sensing. J Biol Phys 2006; 32:289-306. [PMID: 19669468 DOI: 10.1007/s10867-006-9017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/21/2006] [Accepted: 04/28/2006] [Indexed: 12/22/2022] Open
Abstract
The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase is a more steady increase of insulin release over minutes to hours, if the elevated glucose concentration is sustained. The paper describes the glucose sensing mechanism via the complex dynamics of the key enzyme glucokinase, which controls the first step in glucose metabolism: phosphorylation of glucose to glucose-6-phosphate. Three time-dependent phenomena (mechanisms) are described. The fastest, corresponding to the first phase, is a delayed negative feedback regulating the glucokinase activity. Due to the delay, a rapid glucose increase will cause a burst of activity in the glucose sensing system, before the glucokinase is down-regulated. The second mechanism corresponds to the translocation of glucokinase from an inactive to an active form. As the translocation is controlled by the product(s) of the glucokinase reaction rather than by the substrate glucose, this mechanism gives a positive, but saturable, feedback. Finally, the release of the insulin granules is assumed to be enhanced by previous glucose exposure, giving a so-called glucose memory to the beta-cells. The effect depends on the insulin release of the cells, and this mechanism constitutes a second positive, saturable feedback system. Taken together, the three phenomena describe most of the glucose sensing behaviour of the beta-cells. The results indicate that the insulin release is not a precise function of the plasma glucose concentration. It rather looks as if the beta-cells just increase the insulin production, until the plasma glucose has returned to normal. This type of integral control has the advantage that the precise glucose sensitivity of the beta-cells is not important for normal glucose homeostasis.
Collapse
Affiliation(s)
- Thomas Vagn Korsgaard
- Development Projects Management, Novo Nordisk A/S, Novo Allè, 2880 Bagsvaerd, Denmark
| | | |
Collapse
|
7
|
Throsby M, Coulaud J, Durant S, Homo-Delarche F. Increased transcriptional preproinsulin II beta-cell activity in neonatal nonobese diabetic mice: in situ hybridization analysis. Rev Diabet Stud 2005; 2:75-83. [PMID: 17491682 PMCID: PMC1783555 DOI: 10.1900/rds.2005.2.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the prediabetic nonobese diabetic (NOD) mouse, a spontaneous model of type 1 diabetes, we previously reported transient postweaning hyperinsulinemia followed by progressive islet hyperplasia. A modified in situ hybridization technique was used to determine whether these effects were accompanied by changes in insulin transcriptional activity as a function of age. We found that NOD neonates express higher levels of preproinsulin II primary transcripts than age-matched C57BL/6 mice, but this difference disappeared within the first wk of age. To manipulate insulin transcriptional activity in NOD neonates, NOD mothers were treated with insulin during the last two wk of gestation. A down-regulation of beta-cell hyperactivity was observed in female NOD neonates but not in male neonates. By contrast, the same insulin treatment applied to NODscid (severe combined immunodeficiency) mothers, devoid of functional lymphocytes but showing like NOD mice postweaning hyperinsulinemia, increased transcriptional beta-cell activity in both sexes of neonates. In conclusion, NOD mice exhibit successive and transient signs of beta-cell hyperactivity, reflected as early as birth by high transcriptional preproinsulin II activity and later, from weaning to around 10 wk of age, by hyperinsulinemia. Of note, when thinking in terms of in utero disease programming, the NOD neonatal transcriptional beta-cell hyperactivity could be modulated by environmental (maternal and/or fetal) factors.
Collapse
Affiliation(s)
- Marc Throsby
- Crucell Holland B.V., Leiden 2301 CA, The Netherlands
| | | | - Sylvie Durant
- INSERM U530, Centre Universitaire-UFR Biomédicale, 75006 Paris, France
| | - Francoise Homo-Delarche
- CNRS UMR 7059, Paris 7 University, 75005 Paris, France
- Address correspondence to: Francoise Homo-Delarche, e-mail:
| |
Collapse
|
8
|
Takehiro M, Fujimoto S, Shimodahira M, Shimono D, Mukai E, Nabe K, Radu RG, Kominato R, Aramaki Y, Seino Y, Yamada Y. Chronic exposure to beta-hydroxybutyrate inhibits glucose-induced insulin release from pancreatic islets by decreasing NADH contents. Am J Physiol Endocrinol Metab 2005; 288:E372-80. [PMID: 15479955 DOI: 10.1152/ajpendo.00157.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.
Collapse
Affiliation(s)
- Mihoko Takehiro
- Dept. of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Radu RG, Fujimoto S, Mukai E, Takehiro M, Shimono D, Nabe K, Shimodahira M, Kominato R, Aramaki Y, Nishi Y, Funakoshi S, Yamada Y, Seino Y. Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am J Physiol Endocrinol Metab 2005; 288:E365-71. [PMID: 15479952 DOI: 10.1152/ajpendo.00390.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.
Collapse
Affiliation(s)
- Razvan Gheorghe Radu
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Homo-Delarche F. Neuroendocrine Immuno-ontogeny of the Pathogenesis of Autoimmune Diabetes in the Nonobese Diabetic (NOD) Mouse. ILAR J 2004; 45:237-58. [PMID: 15229372 DOI: 10.1093/ilar.45.3.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward.
Collapse
Affiliation(s)
- Françoise Homo-Delarche
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Paris 7/D.Diderot, Paris, France
| |
Collapse
|
11
|
Kajikawa M, Fujimoto S, Tsuura Y, Mukai E, Takeda T, Hamamoto Y, Takehiro M, Fujita J, Yamada Y, Seino Y. Ouabain suppresses glucose-induced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets. Diabetes 2002; 51:2522-9. [PMID: 12145166 DOI: 10.2337/diabetes.51.8.2522] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined the effects of reduced Na(+)/K(+)-ATPase activity on mitochondrial ATP production and insulin release from rat islets. Ouabain, an inhibitor of Na(+)/K(+)-ATPase, augmented 16.7 mmol/l glucose-induced insulin release in the early period but suppressed it after a delay of 20-30 min. Unexpectedly, the ATP content in an islet decreases in the presence of 16.7 mmol/l glucose when Na(+)/K(+)-ATPase activity is diminished by ouabain, despite the reduced consumption of ATP by the enzyme. Ouabain also suppressed the increment of ATP content produced by glucose even in Ca(2+)-depleted or Na(+)-depleted conditions. That mitochondrial membrane hyperpolarization and O(2) consumption in islets exposed to 16.7 mmol/l glucose were suppressed by ouabain indicates that the glycoside inhibits mitochondrial respiration but does not produce uncoupling. Ouabain induced mitochondrial reactive oxygen species (ROS) production that was blocked by myxothiazol, an inhibitor of site III of the mitochondrial respiratory chain. An antioxidant, alpha-tocopherol, also blocked ouabain-induced ROS production as well as the suppressive effect of ouabain on ATP production and insulin release. However, ouabain did not directly affect the mitochondrial ATP production originating from succinate and ADP. These results indicate that ouabain suppresses mitochondrial ATP production by generating ROS via transduction, independently of the intracellular cationic alternation that may account in part for the suppressive effect on insulin secretion.
Collapse
Affiliation(s)
- Mariko Kajikawa
- Department of Metabolism and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takeda T, Tsuura Y, Fujita J, Fujimoto S, Mukai E, Kajikawa M, Hamamoto Y, Kume M, Yamamoto Y, Yamaoka Y, Yamada Y, Seino Y. Heat shock restores insulin secretion after injury by nitric oxide by maintaining glucokinase activity in rat islets. Biochem Biophys Res Commun 2001; 284:20-5. [PMID: 11374865 DOI: 10.1006/bbrc.2001.4933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.
Collapse
Affiliation(s)
- T Takeda
- Department of Metabolism and Clinical Nutrition, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|